Download presentation
Presentation is loading. Please wait.
1
Imaging Every Bounce in a Multiple G. Schuster, J. Yu, R. He U of Utah
2
OUTLINE Why Migrate Multiples? Migrating every Bounce Numerical Results Summary.
3
Why Migrate Multiples? Wider Coverage Better Fold Better Vert. Res.
4
Motivation 1: Extend Coverage 3D Courtesy of B. Paulsson PGSI
5
Shot radius 160 level Receiver array Depth in Well: 4,000-12,000 ft 22,000 ft 20,000 ft 22,000 ft The 3D Image Volume from a Massive 3D VSP ® Survey Courtesy of B. Paulsson PGSI
6
3D View of the image volume around the 3D VSP well
10
0 8 km 0 (Zhang & McMechan 1997) 24 km Motivation 2: Peek Around Corners with Multiples
11
OUTLINE Why Migrate Multiples? Migrating every Bounce Numerical Results Summary.
12
Migrating Every Bounce 1. Predict Multiple Traveltimes from Data Primary Pick t(s,g’) Pick t(s,g’) sg’
13
Migrating Every Bounce 1. Predict Multiple Traveltimes from Data sg’g sg’gPrimarysg’g t(s,g’) + t(g’,g) t(s,g’,g) = min( ) Asakawa & Matsuoka, 2002
14
0 m 180 m 0.1 s 0.0 s Time (s) X (m) 3rd-order 2nd-order 1st-order primary Free-Surface Multiples & 2-Layer Model
15
Migrating Every Bounce 1. Predict Multiple Traveltimes from Data s g 2. Migrate Multiples Sum Data along Predicted T(s,x,g) d(g, t(s,g’) + t(g’,x,g’’) + t(g’’,g) ) g m(x) = Predicted from Data xg’g’’
16
Migrating Every Bounce 1. Predict Multiple Traveltimes from Data s g 2. Migrate Multiples Sum Data along Predicted T(s,x,g) d(g, t(s,x,g’) + t(g’,g’’) + t(g’’,g) ) g m(x) = x
17
Modeling Peglegs (Jakubowicz; Reshef, Keydar, Landa; Weglein, Gasparotto, et al). sg X y t(s1y) + t(x2g) - t(xoy) = t(s1o2g) 12 o ?PrimariesPegleg A B Choose x & y so incidence angles agree
18
Summary s g Migrate Multiples d(g, t(s,x,g’) + t(g’,g’’) + t(g’’,g) ) g m(x) = x model model
19
OUTLINE Why Migrate Multiples? Migrating every Bounce Numerical Results Summary.
20
d 0 km X 5 km 0 km Z 2.5 km 0 km Z 2.5 km m0 + m1 + m2 m0 m1m2 2-Layer Model: Migration 1 CSG
21
0 km X 5 km m0 + m1 m0 X z X z m0 vs m1: 2-Layer Migration Images Even Illumination
22
OUTLINE Why Migrate Multiples? Migrating every Bounce Numerical Results Summary.
23
One part of SMAART model Depth (ft) 0 30K Offset (ft)050.55K reflector 0 reflector 1 reflector 2 reflector 3
24
Time (s) (s) 0 9Geophone(#)1 540 540 Free-Surface Multiple
25
Time (s) (s) 0 9Geophone(#)1 540 540 Another Multiple
26
KM before de-multiple Depth (ft) 0 30K Offset (ft)1 50.55K
27
KM after de-multiple Depth (ft) 0 30K Offset (ft)1 50.55K
28
Multiple migration Depth (ft) 0 30K Offset (ft)050.55K Using multiple 02020
29
Multiple migration result Depth (ft) 0 30K Offset (ft)1 50.55K
30
Multiple migration result Offset (ft) Depth (ft) Depth (ft) 3750 26,250 6,750 9,375
31
OUTLINE Why Migrate Multiples? Migrating every Bounce Numerical Results Summary.
32
Raw Data of CRG#15Ghosts of CRG# 15 0 0.37 Time (s) 1000 ft 00
33
Raw Data of CRG#15Primary of CRG# 15 0 0.37 Time (s) 1000 ft 00
34
Primary Image1st Ghost Image 0 1 Depth (kft) 445 ft 00
35
Primary Image1st Order Ghost Image 0 1 Depth (kft) 445 ft 00
36
Well & Primary ImageWell & 1st Ghost Image 0 1 Depth (kft) Offset=105ft
37
Well & Primary ImageWell & 1st Ghost Image 0 1 Depth (kft) Offset=200 ft
38
Summary Use data to design migration kernel Benefits: Better resol. & fold kernel Use Delft method predict multiples Test on field data
39
Primary Migration x Sum Data along Predicted T(g) Predicted by Ray Tracing
40
Multiple Migration x Sum Data along Predicted T(g) Predicted from Data Predicted from Ray Tracing
41
Prediction+Subtraction u Predict or pick the traveltime of a multiple. u u NMO the multiple within a time window. u u If a significant overlaying primary is suppressed at the same time, use the same strategy to predict it and fill the gap. u u Predict the multiple by a multichannel two-way prediction filter. u u Subtract the predicted multiple.
42
OUTLINE Why Migrate Multiples? Prediction of Multiple T(g) Joint Migration Pattern Recog. Joint Migration LSM.
43
What Good are Natural T(s,g’,g)? Primary g’g s’ t(s,g’,g) = min(t(s,g’) + t(g’,g)) t(s,g’,g) = min(t(s,g’) + t(g’,g)) g’g’g’g’
44
Answer 1: Natural Decon of Multiples Primary g’g s’ Actual Multiple Predicted Multiple Adaptive Subtraction Deblurring: d = G d 10
45
Answer 2: Semi-Natural Migration of Multiples g’ s Actual Multiple Predicted Multiple x d(g, t(s,g’) + t(g’,x) + t(x,g) ) g m(x) = g
46
OUTLINE Why Migrate Multiples? Prediction of Multiple T(g) Joint Migration Pattern Recog. Joint Migration LSM.
47
0 km 5 km 0 km 7 km Salt Model
48
Joint Migration : LS Multiple Migration PROBLEM : Multiples get Coherently Migrated Primary Multiple SOLUTION: Least Squares Joint Migration MultiplePrimary L0 m0 + L1 m1 = d (L0 + L1) m = d
49
0 km 5 km 0 km 7 km 0 km 7 km L0 0 0L0L1L2 ++ Standard Migration L1 L2 Correlation Wt L0 L0L1L L1 L2
50
s 0 km 5 km 0 km 7 km 0 km 7 km Migration with Correlation Weights Correlation Weights
51
0 km 5 km 0 km 7 km 0 km 7 km Ground Truth Migration
52
OUTLINE Why Migrate Multiples? Prediction of Multiple T(g) Joint Migration Pattern Recog. Joint Migration LSM.
53
Multiple Migration x Sum Data along Predicted T(g) Predicted from Data Predicted from Ray Tracing
54
Middle Bounce Migration x Predicted from Ray Tracing d(g, t(s,g’) + t(g’,x,g’’) + t(g’’,g) ) g m(x) = Predicted from Data
55
Rigorous Theory? D(g) = R f + R f + ….. 1211212dataprimary1st-order 1 2
56
Frechet Derivative D(g) = R f + R f + ….. 12112121 2 r rr r R 121 f R 121 rR121 fR121 + product rule
57
d 0 km X 5 km 0 km Z 2.5 km 0 km Z 2.5 km m0 + m1 + m2 m0 m1m2
58
Multiple 01020 Time (s) 0 9 Geophone(#)1 540
59
Multiple 0202010 Time (s) 0 9 Geophone(#)1 540
60
0 km 2 km 0 km 2 km 2 km 0 km 2 km 2 km 0 km 2 km 2 km Graben Model Standard Migration Least Squares Migration Least Squares MigrationGhosts
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.