Download presentation
Presentation is loading. Please wait.
1
11/21/02Visualization Laboratory, Texas A&M University1 Next Generation Spatially Immersive Visualization Systems Prof. Frederic I. Parke Visualization Sciences Program
2
11/21/02Visualization Laboratory, Texas A&M University2 Fully Immersive Characteristics u Wrap around visual ‘immersion’ u Possibly multi-sensory –sight, sound, touch,... u Two main types –spatially immersive and –head mounted displays
3
11/21/02Visualization Laboratory, Texas A&M University3 Spatially Immersive Systems u Multiple images projected on surrounding surfaces u Often use stereo images –(active) Sequential images »Single projector / Shutter glasses –(passive) Dual stereo images »Two projectors / Polarized filters u May use position tracking
4
11/21/02Visualization Laboratory, Texas A&M University4 Examples - CAVE systems developed at U. of Illinois now commercial versions
5
11/21/02Visualization Laboratory, Texas A&M University5 Cave Display Surfaces u up to 6 surfaces of a small room or cubical environment u typically systems use only 3 or 4 walls
6
11/21/02Visualization Laboratory, Texas A&M University6 Immersive Environments Major Components –the computational “fabric” –the display “surfaces” –user interaction and tracking
7
11/21/02Visualization Laboratory, Texas A&M University7 What is the Next Generation? u New look at the computational fabric and u New look at the display surfaces
8
11/21/02Visualization Laboratory, Texas A&M University8 Use a ‘Commodity’ Computing Fabric Benefit from –cost/performance advantages –rapid development –lower cost
9
11/21/02Visualization Laboratory, Texas A&M University9 Commodity Computing Concept u Cluster of commodity computers u Fast network interconnection u Open source operating system (Linux)
10
11/21/02Visualization Laboratory, Texas A&M University10 Visual Computing Clusters u Extended Cluster Concept u Use ‘visual’ computing nodes u Each computational node has a graphics processor u Each node drives a small facet of the total display surface
11
11/21/02Visualization Laboratory, Texas A&M University11 Current Technology Visual Computing Node u Dual 3.0 GHz Xeon processors u 4 Gbytes memory u High-performance graphics processor –such as nVidia 4400 u 1 Gbit networking u ~$4,500 each
12
11/21/02Visualization Laboratory, Texas A&M University12 ‘Next Generation’ Computing Fabric u A 12 to 60 node visual computing cluster u Each node corresponds to one display facet u Plus one control / interface computer
13
11/21/02Visualization Laboratory, Texas A&M University13 Related Work u Tiled Displays/PowerWalls –Princeton –Argonne National Lab –UNC-CH u Multi-Graphics Project –Stanford
14
11/21/02Visualization Laboratory, Texas A&M University14 The ‘Ideal’ Display Surface? u Is probably task specific u One concept is a seamless surrounding sphere with high resolution wrap around images, high update rate, and high complexity modeled environments
15
11/21/02Visualization Laboratory, Texas A&M University15 Display Geometries u We want better geometric approximations to the ‘ideal’ sphere u The CAVE is a poor approximation u A number of polyhedral configurations are better
16
11/21/02Visualization Laboratory, Texas A&M University16 Polyhedral Display Systems u Multiple display facets u Each facet driven from one visual computing node u Low cost per facet u High aggregate performance u High aggregate resolution
17
11/21/02Visualization Laboratory, Texas A&M University17 One possible configuration a 24 facet polyhedron Trapezoidal Icositetrahedra
18
11/21/02Visualization Laboratory, Texas A&M University18 24 Facet polyhedral as approximation to a sphere
19
11/21/02Visualization Laboratory, Texas A&M University19 24 Facet projector placement
20
11/21/02Visualization Laboratory, Texas A&M University20 Visual simulation of a 24 facet display structure
21
11/21/02Visualization Laboratory, Texas A&M University21 Simulated cross-sectional view of a 5 meter 24 facet display environment
22
11/21/02Visualization Laboratory, Texas A&M University22 Another possible configuration a 60 faceted polyhedra Pentagonal Hexcontahedra
23
11/21/02Visualization Laboratory, Texas A&M University23 Objectives u Lower cost u Commodity components u Reasonable performance u Useful and effective u Open software
24
11/21/02Visualization Laboratory, Texas A&M University24 Challenges u Software Development u Distributed Data Management u Display Synchronization / Stereo Display u Physical Structure/Environment u Suitable Projection Systems u Display Calibration
25
11/21/02Visualization Laboratory, Texas A&M University25 Software Development u Adapting existing software packages such as OpenSG, VR Juggler, (CaveLib), … u Developing new local software u Support for different display geometries u Application development support
26
11/21/02Visualization Laboratory, Texas A&M University26 Stereo Display u Active »time sequential – shutter glasses »requires very tight synchronization u Passive » anaglyphic – red /cyan (one proj) » polarized (two projectors)
27
11/21/02Visualization Laboratory, Texas A&M University27 Physical Structures u Screen frame design »Minimal ‘seams’ u Projector placement »Optical folding »Projector mounts »Heat ‘ripples’ u Screen material »Optical properties
28
11/21/02Visualization Laboratory, Texas A&M University28 Image Compensation u Geometric correction – off axis & projector distortion –‘Image stability’ – explored several approaches u Intensity / color correction
29
11/21/02Visualization Laboratory, Texas A&M University29 Budget for a 7 Facet System NSF System u 7 x $17.75k = ~$124k u plus ~ $36k for a control/interface computer, interaction devices, networking, sound, installation, etc… u Total ~ $160k
30
11/21/02Visualization Laboratory, Texas A&M University30 24 Facet polyhedral as approximation to a sphere
31
11/21/02Visualization Laboratory, Texas A&M University31 Revised NSF Budget (2005) For each facet ~ $17.75k –2 Visual computing nodes ~ $9k –2 Display projectors ~ $3.5k –Screen and structure ~$3.8k –Misc. components ~$1.45k
32
11/21/02Visualization Laboratory, Texas A&M University32 Project History u ~1990 Air Force project @ NYIT u ~1998 current concept (w/Ergun) u 2000 CRIC funding (~$5k) u 2002 TITF funding ($165k) u 2005 NSF funding ($500k)
33
11/21/02Visualization Laboratory, Texas A&M University33 3/10 scale physical model using 24 identical facets
34
11/21/02Visualization Laboratory, Texas A&M University34 Finished Prototype Architecture Building Atrium ~ 5’ diameter (Mid – 2001)
35
11/21/02Visualization Laboratory, Texas A&M University35 ¾ Scale Presentation Prototype Completed May 2002
36
11/21/02Visualization Laboratory, Texas A&M University36 Half of structure frame
37
11/21/02Visualization Laboratory, Texas A&M University37 Structure with projected images
38
11/21/02Visualization Laboratory, Texas A&M University38 Rear view of 4 screen structure section
39
11/21/02Visualization Laboratory, Texas A&M University39 Operational prototype in use
40
11/21/02Visualization Laboratory, Texas A&M University40 Closer view
41
11/21/02Visualization Laboratory, Texas A&M University41 Project Status u 3 screen prototype (3/4 scale) u 5 screen prototype (full scale) u 7 screen prototype (1/2 scale) u Software (2 generations) –‘3Dengine’ –‘Guppy3D’
42
11/21/02Visualization Laboratory, Texas A&M University42 Future Modular Versions u Replace projectors and screens with large flat panel display facets u Create bolt together modules
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.