Download presentation
Presentation is loading. Please wait.
2
The effects of intraspecific interactions on the stability of a simple food chain George van Voorn, Thilo Gross, Bob Kooi, Ulrike Feudel, Bas Kooijman Dresden, July 18-22 2005 http://www.bio.vu.nl/thb/ george.van.voorn@falw.vu.nl Van Voorn et al.
3
Overview Introduction Stability in food chain models – several mechanisms Functional responses Intraspecific interference between predators Models: Rosenzweig-MacArthur and Mass-balance Model analysis Asymptotic behaviour in food chain models (bifurcations) Stability criteria (RM) Numerical results (MB) Discussion Other functional responses (literature search) Overview Intro 1 Intro 2 Intro 3 Intro 4 Intro 5 Intro 6 Results 1 Results 2 Results 3 Results 4 Results 5 Results 6 Discuss 1 Discuss 2 Discuss 3 Discuss 4 Discuss 5 Van Voorn et al.
4
Food chain stability A few highlights regarding food chain stability: Destabilisation through nutrient enrichment ‘Paradox of enrichment’ Rosenzweig, M.L. (1971). Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science, 171:385-387. Maintenance costs for living cells Nisbet, R.M., Cunningham, A., and Gurney, W.S.C. (1983). Endogenous metabolism and the stability of microbial prey-predator systems. Biotechnology and bioengineering, 25:301-306. Ecosystem nutrient recycling DeAngelis, D.L. (1992). Dynamics of Nutrient Cycling and Food Webs. Chapman & Hall. Properties of functional form of interaction function Gross, T., Ebenhöh, W. and Feudel, U. (2005). Enrichment and foodchain stability: the impact of different forms of predator-prey interaction. Journal of Theoretical Biology, 227:349-358. Overview Intro 1 Intro 2 Intro 3 Intro 4 Intro 5 Intro 6 Results 1 Results 2 Results 3 Results 4 Results 5 Results 6 Discuss 1 Discuss 2 Discuss 3 Discuss 4 Discuss 5 Van Voorn et al.
5
Trophic interaction functions Laboratory experiments on predator-prey systems Wiedenmann, R.N. & O’Neil, R.J. (1991). Laboratory measurements of the functional response of Podisus maculiventris (Say) (Heteroptera: Pentatomidae). Environmental Entomology, 20:610-614. resemblance Holling type II FR (Holling, 1959), but: 1 predator No other organisms, only prey Field tests: significantly lower attack rates Searching efficiency of predators < with increasing numbers Hassell, M.P. (1971). Mutual interference between searching insect parasites. Journal of Animal Ecology, 40:473-486. Predators hampered by other factors than handling time?! Overview Intro 1 Intro 2 Intro 3 Intro 4 Intro 5 Intro 6 Results 1 Results 2 Results 3 Results 4 Results 5 Results 6 Discuss 1 Discuss 2 Discuss 3 Discuss 4 Discuss 5 Van Voorn et al.
6
Intraspecific interference where = searching time [m t/V] = handling time [t] = interacting time [t] Mutual interference through intraspecific interactions Beddington-DeAngelis functional response (BD-FR) Beddington, J.R. (1975). Mutual interference between parasites or predators and its effect on searching efficiency. Journal of Animal Ecology, 44:331-340. DeAngelis, D.L., Goldstein, R.A. and O’Neill, R.V. (1975). A model for trophic interaction. Ecology, 56:881- 892. Time scale separation Kooi, B.W., Poggiale, J.C., Auger, P. and Kooijman, S.A.L.M. (2002). Aggregation methods in food chains with nutrient recycling. Ecological modelling, 157:69-86. If k SI = 0 Holling type II FR Overview Intro 1 Intro 2 Intro 3 Intro 4 Intro 5 Intro 6 Results 1 Results 2 Results 3 Results 4 Results 5 Results 6 Discuss 1 Discuss 2 Discuss 3 Discuss 4 Discuss 5 Van Voorn et al.
7
Food web models Classical Rosenzweig-MacArthur Mathematically more tractable Logistic growth prey Linear mortality Mass-balanced chemostat model recycling maintenance explicit nutrient dynamics F(X,Y) is replaced by either Holling type II-FR or BD-FR recycling of maintenance products products Overview Intro 1 Intro 2 Intro 3 Intro 4 Intro 5 Intro 6 Results 1 Results 2 Results 3 Results 4 Results 5 Results 6 Discuss 1 Discuss 2 Discuss 3 Discuss 4 Discuss 5 Van Voorn et al.
8
Predator invasion criteria Y K Predator invasion: transcritical bifurcation Stable equilibrium Fixed K: Y(t), t ∞ Unstable equilibrium Analysis of food web models Asymptotic behaviour bifurcation analysis K TC K TC = The value of K at which the predator invades (RM: can be expressed algebraically) Overview Intro 1 Intro 2 Intro 3 Intro 4 Intro 5 Intro 6 Results 1 Results 2 Results 3 Results 4 Results 5 Results 6 Discuss 1 Discuss 2 Discuss 3 Discuss 4 Discuss 5 Van Voorn et al.
9
Predator-prey cycle criteria Predator-prey cycles: Hopf-bifurcation The value of K H above which cycling occurs can also be calculated algebraically for 2D predator-prey systems Unstable equilibriumStable period solution K < K H K > K H Stable equilibrium Overview Intro 1 Intro 2 Intro 3 Intro 4 Intro 5 Intro 6 Results 1 Results 2 Results 3 Results 4 Results 5 Results 6 Discuss 1 Discuss 2 Discuss 3 Discuss 4 Discuss 5 Van Voorn et al.
10
Results: one-parameter analysis Destabilisation Extinction Continued persistence Classical RM T I = 0 Beddington-DeAngelis T I = 0.04 One-parameter bifurcation analysis RM vs. BD K TC (RM) = K TC (BD), K H (RM) ≠ K H (BD) Intraspecific predator interactions Stabilising effect Overview Intro 1 Intro 2 Intro 3 Intro 4 Intro 5 Intro 6 Results 1 Results 2 Results 3 Results 4 Results 5 Results 6 Discuss 1 Discuss 2 Discuss 3 Discuss 4 Discuss 5 Van Voorn et al.
11
Hopf surface Transcritical surface Classical paradox of enrichment Results: multi-parameter analysis Multi-parameter bifurcation analysis RM vs. BD = T I = 0 < T I > 0 Overview Intro 1 Intro 2 Intro 3 Intro 4 Intro 5 Intro 6 Results 1 Results 2 Results 3 Results 4 Results 5 Results 6 Discuss 1 Discuss 2 Discuss 3 Discuss 4 Discuss 5 Van Voorn et al.
12
Multi-parameter asymptotic behaviour For the RM-model: With BD-FR: The limits for K ∞ are equal There is always a Hopf-bifurcation There is always destabilisation through nutrient enrichment Weakly stabilising: shift of value K H There is a parameter region with no Hopf-bifurcation There is possible avoidance of POE Strongly stabilising: different asymptotes < Multi-parameter asymptotic behaviour Stability criteria Overview Intro 1 Intro 2 Intro 3 Intro 4 Intro 5 Intro 6 Results 1 Results 2 Results 3 Results 4 Results 5 Results 6 Discuss 1 Discuss 2 Discuss 3 Discuss 4 Discuss 5 Van Voorn et al.
13
MB with Holling type II Recycling: weakly destabilising Recycling Mass balanced model Same asymptotes with and without recycling Overview Intro 1 Intro 2 Intro 3 Intro 4 Intro 5 Intro 6 Results 1 Results 2 Results 3 Results 4 Results 5 Results 6 Discuss 1 Discuss 2 Discuss 3 Discuss 4 Discuss 5 Van Voorn et al.
14
MB with BD functional response Different asymptotic bifurcations Always stable MB with BD-FR (also) strongly stabilising Intraspecific interactions Overview Intro 1 Intro 2 Intro 3 Intro 4 Intro 5 Intro 6 Results 1 Results 2 Results 3 Results 4 Results 5 Results 6 Discuss 1 Discuss 2 Discuss 3 Discuss 4 Discuss 5 Van Voorn et al.
15
Maintenance ψ = proportional to maintenance Same asymptotes ψ = 0.25 Same asymptotes ψ = 0.05 Maintenance: weakly stabilising Overview Intro 1 Intro 2 Intro 3 Intro 4 Intro 5 Intro 6 Results 1 Results 2 Results 3 Results 4 Results 5 Results 6 Discuss 1 Discuss 2 Discuss 3 Discuss 4 Discuss 5 Van Voorn et al.
16
Discussion (1) Conclusions: Definition stability Grimm, V. and Wissel, C. (1997). Babel, or the ecological stability discussions: an inventory and analysis of terminology and a guide for avoiding confusion. Oecologia, 109:323-334. Rinaldi, S. and Gragnari, A. (2004). Destabilizing factors in slow-fast systems. Ecological modelling, 180:445-460. For nutrient enrichment well-defined criteria for strong and weak stabilisation is possible Bifurcation analysis yields: Recycling weakly destabilising Maintenance weakly stabilising Intraspecific interactions strongly stabilising but: Other strongly stabilising mechanisms?! Overview Intro 1 Intro 2 Intro 3 Intro 4 Intro 5 Intro 6 Results 1 Results 2 Results 3 Results 4 Results 5 Results 6 Discuss 1 Discuss 2 Discuss 3 Discuss 4 Discuss 5 Van Voorn et al.
17
Strong stabilisation: inedible prey TC H Predators (can) waste time on inedible prey Kretzschmar, M., Nisbet, R.M. and McCauley, E. (1993). A predator-prey model for zooplankton grazing on competing algal populations. Theoretical Population Biology, 44:32-66. Functional response for predator also depends on inedible prey non-prey dependent term alters occurrence of Hopf Interaction edible prey and inedible prey No interaction inedible prey, only with edible prey No difference Different asymptotes Overview Intro 1 Intro 2 Intro 3 Intro 4 Intro 5 Intro 6 Results 1 Results 2 Results 3 Results 4 Results 5 Results 6 Discuss 1 Discuss 2 Discuss 3 Discuss 4 Discuss 5 Van Voorn et al.
18
Strong stabilisation: inducible defences Inducible defences: predation leads to prey that invests energy in defence more time lost on handling Vos, M., Kooi, B.W., DeAngelis, D.L. and Mooij, W.M. (2004). Inducible defences and the paradox of enrichment. Oikos, 105:471-480. Occurrence of Hopf altered by inducible defences limit Hopf ≠ limit TC (other FR) TC: no prey with defences H: prey defensible, more time/prey Overview Intro 1 Intro 2 Intro 3 Intro 4 Intro 5 Intro 6 Results 1 Results 2 Results 3 Results 4 Results 5 Results 6 Discuss 1 Discuss 2 Discuss 3 Discuss 4 Discuss 5 Van Voorn et al.
19
Strong stabilisation: cannibalism Cannibalism: predators feed partially on other predators Alternative food source Kohlmeier, C. and Ebenhöh, W. (1995). The stabilizing role of cannibalism in a predator-prey system. Bulletin of Mathematical Biology, 57:401-411. Measure of cannibalism H η > η * never destabilisation Overview Intro 1 Intro 2 Intro 3 Intro 4 Intro 5 Intro 6 Results 1 Results 2 Results 3 Results 4 Results 5 Results 6 Discuss 1 Discuss 2 Discuss 3 Discuss 4 Discuss 5 Van Voorn et al.
20
Discussion (2) Intraspecific interactions strongly stabilising and: Literature search shows many more mechanisms lead to functional responses not solely depending on prey-density Strongly stabilising effects RM: mathematically more tractable Gross, T., Ebenhöh, W. and Feudel, U. (2005). Enrichment and foodchain stability: the impact of different forms of predator-prey interaction. Journal of Theoretical Biology, 227:349-358. symbolic bifurcation analysis MB: numerical bifurcation analysis Overview Intro 1 Intro 2 Intro 3 Intro 4 Intro 5 Intro 6 Results 1 Results 2 Results 3 Results 4 Results 5 Results 6 Discuss 1 Discuss 2 Discuss 3 Discuss 4 Discuss 5 Van Voorn et al.
21
The effects of intraspecific interactions on the stability of a simple food chain Thanks to: Thilo Gross, Bob Kooi, Ulrike Feudel, Bas Kooijman, João Rodriguez http://www.bio.vu.nl/thb/ george.van.voorn@falw.vu.nl The end
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.