Download presentation
Presentation is loading. Please wait.
1
Section Count Data Models
2
Introduction Many outcomes of interest are integer counts –Doctor visits –Low work days –Cigarettes smoked per day –Missed school days OLS models can easily handle some integer models
3
Example –SAT scores are essentially integer values –Few at ‘tails’ –Distribution is fairly continuous –OLS models well In contrast, suppose –High fraction of zeros –Small positive values
4
OLS models will –Predict negative values –Do a poor job of predicting the mass of observations at zero Example –Dr visits in past year, Medicare patients(65+) –1987 National Medical Expenditure Survey –Top code (for now) at 10 –17% have no visits
5
visits | Freq. Percent Cum. ------------+----------------------------------- 0 | 915 17.18 17.18 1 | 601 11.28 28.46 2 | 533 10.01 38.46 3 | 503 9.44 47.91 4 | 450 8.45 56.35 5 | 391 7.34 63.69 6 | 319 5.99 69.68 7 | 258 4.84 74.53 8 | 216 4.05 78.58 9 | 192 3.60 82.19 10 | 949 17.81 100.00 ------------+----------------------------------- Total | 5,327 100.00
6
Poisson Model y i is drawn from a Poisson distribution Poisson parameter varies across observations f(y i ;λ i ) =e -λi λ i yi /y i ! For λ i >0 E[y i ]= Var[y i ] = λ i = f(x i, β)
7
λ i must be positive at all times Therefore, we CANNOT let λ i = x i β Let λ i = exp(x i β) ln(λ i ) = (x i β)
8
d ln(λ i )/dx i = β Remember that d ln(λ i ) = dλ i /λ i Interpret β as the percentage change in mean outcomes for a change in x
9
Problems with Poisson Variance grows with the mean –E[y i ]= Var[y i ] = λ i = f(x i, β) Most data sets have over dispersion, where the variance grows faster than the mean In dr. visits sample, = 5.6, s=6.7 Impose Mean=Var, severe restriction and you tend to reduce standard errors
10
Negative Binomial Model Where γ i = exp(x i β) and δ ≥ 0 E[y i ] = δγ i = δexp(x i β) Var[y i ] = δ (1+δ) γ i Var[y i ]/ E[y i ] = (1+δ)
11
δ must always be ≥ 0 In this case, the variance grows faster than the mean If δ=0, the model collapses into the Poisson Always estimate negative binomial If you cannot reject the null that δ=0, report the Poisson estimates
12
Notice that ln(E[y i ]) = ln(δ) + ln(γ i ), so d ln(E[y i ]) /dx i = β Parameters have the same interpretation as in the Poisson model
13
In STATA POISSON estimates a MLE model for poisson –Syntax POISSON y independent variables NBREG estimates MLE negative binomial –Syntax NBREG y independent variables
14
Interpret results for Poisson Those with CHRONIC condition have 50% more mean MD visits Those in EXCELent health have 78% fewer MD visits BLACKS have 33% fewer visits than whites Income elasticity is 0.021, 10% increase in income generates a 2.1% increase in visits
15
Negative Binomial Interpret results the same was as Poisson Look at coefficient/standard error on delta Ho: delta = 0 (Poisson model is correct) In this case, delta = 5.21 standard error is 0.15, easily reject null. Var/Mean = 1+delta = 6.21, Poisson is mis-specificed, should see very small standard errors in the wrong model
16
Selected Results, Count Models Parameter (Standard Error) VariablePoissonNegative Binomial Age650.214(0.026)0.103(0.055) Age700.787(0.026)0.204(0.054) Chronic0.500(0.014)0.509(0.029) Excel-0.784(0.031)-0.527(0.059) Ln(Inc).0.021(0.007)0.038(0.016)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.