Download presentation
Presentation is loading. Please wait.
1
EEM232 Digital Systems I
2
Course Information Instructor : Atakan Doğan (atdogan@anadolu.edu.tr)atdogan@anadolu.edu.tr Office hours: TBD Materials : http://home.anadolu.edu.tr/~atdogan/http://home.anadolu.edu.tr/~atdogan/ Text : M. Morris Mano, Charles R. Kime. Logic and Computer Design Fundamentals 3rd Edition. Prentice Hall. 2004
3
Grading Two Midterm Exams:30% Four Quizes:20% Four HWs: 10% Final:40% Grading Guidelines AA: 90-100 Others: 40-90 FF: 0-40
4
3 Why should you take EEM 232? A required course according to our curriculum The theory of operation of digital devices form a basis for other courses in the EE/CS curriculum. – EEM 334 Digital Systems II – EEM 486 Computer Architecture – EEM 336 Microprocessors I Digital systems are widespread in use. – Integrated Circuits that operate on digital data are in 95% of every electrical powered device in the U.S. The job market for engineers and computer scientists with Digital Design skills is at high and will continue growing.
5
4 Course Objectives To learn how to analyze and design digital circuits – Logic Gates – Boolean Algebra – Combinational circuits Boolean function, truth table, circuit Decoder/Encoder Multiplexer/Demultiplexer Adder/Subracter/Multiplier ALU – Synchronous sequential circuits Latch/Flip-flop Moore/Mealy circuits Counter Register – RAM/ROM and Programmable Logic Devices
6
5 Anolog vs. Digital Analog Circuit: processes signals that can take any value across a continuous range of a physical quantity. – Voltage, current, etc. – Basic elements: resistor, capacitor, inductor, amplifier, etc. Digital Circuit: manipulates signals that can take only one of two discrete values: 0 or 1, low or high, true or false. – Basic elements: Logic gate
7
6 Digital Abstraction Digital circuits: – Built with anolog components such as MOS transistors – Deal with anolog voltages and currents Digital abstraction of analog signals: – A signal is 1 if it is close enough to VCC – A signal is 0 if it is close enough to GND Digital abstraction allows anolog behavior to be ignored - Circuits can be modeled as if the digital circuits really did process 0s and 1s.
8
7 Why Digital? Reproducibility – Given the same inputs, digital circuit generates the same outputs. – The outputs of an analog circuit vary with temperature, power-supply voltage, component aging, etc. Ease of design – No complicated math skills are needed – The behavior of small circuits can be understood without knowing the details of complicated devices. Flexibility and functionality – Different ways to process digitalized data (compress, encrypt, store)
9
8 Why Digital? Programmability – Hardware description language to design circuit Speed – Very fast speed: Several gigahertz clock rate Economy – A lot of functionality in a small space – Millions of transistors on a chip Rapidly and steadily advancing technology – Moore’s law (Gordon E. Moore, a co-founder of Intel)
10
9 Why Digital? Digital data can have additional data added to it to allow for detection and correction of errors – Scratch a CDROM - will still play fine – Scratch, stretch an analog tape - throw it away Digital data can be transmitted over a medium that introduces errors that are corrected at receiving end – Satellite transmission of DirectTV - each ‘screen’ image is digitally encoded; errors corrected when it reaches your digital Set Top receiver, shows up as a ‘Perfect’ Picture.
11
10 Many Representations of Digital Logic Logic diagrams Transistor-level circuit diagrams Equations: Z = S A + S B
12
11 Truth tables Prepackaged building blocks, e.g. multiplexer Many Representations of Digital Logic
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.