Download presentation
1
PHYS 415: OPTICS Polarization (from Trebino’s lectures)
Good afternoon My name is Omer Ilday. today I will be talking about the generation of <100 fs pulses from a 200 MHz RR passively modelocked Yb-oscillator. F. ÖMER ILDAY Department of Physics, Bilkent University, Ankara, Turkey
2
45° Polarization Here, the complex amplitude, E0 is the same for each component. So the components are always in phase. ~
3
Arbitrary-Angle Linear Polarization
x y E-field variation over time (and space) a Here, the y-component is in phase with the x-component, but has different magnitude.
4
The Mathematics of Polarization
Define the polarization state of a field as a 2D vector— Jones vector—containing the two complex amplitudes: For many purposes, we only care about the relative values: (alternatively normalize this vector to unity magnitude) Specifically: 0° linear (x) polarization: Ey /Ex = 0 90° linear (y) polarization: Ey /Ex = ¥ 45° linear polarization: Ey /Ex = 1 Arbitrary linear polarization:
5
Circular (or Helical) Polarization
Or, more generally, Here, the complex amplitude of the y-component is -i times the complex amplitude of the x-component. So the components are always 90° out of phase. The resulting E-field rotates counterclockwise around the k-vector (looking along k).
6
Right vs. Left Circular (or Helical) Polarization
x y E-field variation over time (and space) kz-wt = 0° kz-wt = 90° Or, more generally, Here, the complex amplitude of the y-component is +i times the complex amplitude of the x-component. So the components are always 90° out of phase, but in the other direction. The resulting E-field rotates clockwise around the k-vector (looking along k).
7
Unequal arbitrary-relative-phase components yield elliptical polarization
x y E-field variation over time (and space) where Or, more generally, The resulting E-field can rotate clockwise or counter-clockwise around the k-vector (looking along k).
8
The mathematics of circular and elliptical polarization
Circular polarization has an imaginary Jones vector y-component: Right circular polarization: Left circular polarization: Elliptical polarization has both real and imaginary components: We can calculate the eccentricity and tilt of the ellipse if we feel like it.
9
When the phases of the x- and y-polarizations fluctuate, we say the light is unpolarized.
where qx(t) and qy(t) are functions that vary on a time scale slower than 1/w, but faster than you can measure. The polarization state (Jones vector) will be: As long as the time-varying relative phase, qx(t)–qy(t), fluctuates, the light will not remain in a single polarization state and hence is unpolarized. In practice, the amplitudes vary, too!
10
Light with very complex polarization vs. position is also unpolarized.
Light that has passed through “cruddy stuff” is often unpolarized for this reason. We’ll see how this happens later. The polarization vs. position must be unresolvable, or else, we should refer to this light as locally polarized.
11
Birefringence The molecular "spring constant" can be different for different directions.
12
Birefringence The x- and y-polarizations can see different refractive
index curves.
13
Uniaxial crystals have an optic axis
Uniaxial crystals have one refractive index for light polarized along the optic axis (ne) and another for light polarized in either of the two directions perpendicular to it (no). Light polarized along the optic axis is called the extraordinary ray, and light polarized perpendicular to it is called the ordinary ray. These polarization directions are the crystal principal axes. Light with any other polarization must be broken down into its ordinary and extraordinary components, considered individually, and recombined afterward.
14
Birefringence can separate the two polarizations into separate beams
no ne o-ray e-ray Due to Snell's Law, light of different polarizations will bend by different amounts at an interface.
15
Calcite Calcite is one of the most birefringent materials known.
16
Polarizers take advantage of birefringence, Brewster's angle, and total internal reflection.
Here’s one approach: Combine two prisms of calcite, rotated so that the ordinary polarization in the first prism is extraordinary in the second (and vice versa). The perpendicular polarization goes from high index (no) to low (ne) and undergoes total internal reflection, while the parallel polarization is transmitted near Brewster's angle.
17
Polarizers Air-spaced polarizers
Photographs taken from a Lambda Research Optics advertisement Air-spaced polarizers
18
Wollaston Polarizing Beam Splitter
The Wollaston polarizing beam splitter uses two rotated birefringent prisms, but relies only on refraction. The ordinary and extraordinary rays have different refractive indices and so diverge.
19
Dielectric polarizers
A multi-layer coating (which uses interference; we’ll get to this later) can also act as a polarizer. Melles-Griot catalog Glass Ealing Optics catalog
20
Wire Grid Polarizer Input light contains both polarizations The light can excite electrons to move along the wires, which then emit light that cancels the input light. This cannot happen perpen- dicular to the wires. Such polarizers work best in the IR. Polaroid sheet polarizers use the same idea, but with long polymers.
21
Wire grid polarizer in the visible
Using semiconductor fabrication techniques, a wire-grid polarizer was recently developed for the visible. The spacing is less than 1 micron.
22
The Measure of a Polarizer
The ideal polarizer will pass 100% of the desired polarization and 0% of the undesired polarization. It doesn’t exist. The ratio of the transmitted irradiance through polarizers oriented parallel and then crossed is the Extinction ratio or Extinction coefficient. We’d like the extinction ratio to be infinity. 0° Polarizer 0° Polarizer 90° Polarizer Type of polarizer Ext. Ratio Cost Calcite: $ Dielectric: $ Polaroid sheet: $1 - 2
23
} } Wave plates Polarization state: Input: Output: Wave plate
Optic axis -45° Polarization x y z When a beam propagates through a birefringent medium, one polarization sees more phase delay than the other. This changes the relative phase of the x and y fields, and hence changing the polarization. Polarization state: } Input: } Output:
24
Wave plates (continued)
Wave plate output polarization state: (45-degree input polarization) Quarter-wave plate Half-wave plate A quarter-wave plate creates circular polarization, and a half-wave plate rotates linear polarization by 90. We can add an additional 2mp without changing the polarization, so the polarization cycles through this evolution as d increases further.
25
Half-wave plate When a beam propagates through a half-wave plate, one polarization experiences half of a wavelength more phase delay than the other. If the incident polarization is +45° to the principal axes, then the output polarization is rotated by 90° to -45°.
26
Wave plates and input polarization
Remember that our wave plate analysis assumes 45° input polarization relative to its principal axes. This means that either the input polarization is oriented at 45°, or the wave plate is. ±45° Polarizer 0° or 90° Polarizer Wave plate w/ axes at 0° or 90° Wave plate w/ axes at ±45° If a HWP, this yields 45° polarization. If a QWP, this yields circular polarization. If a HWP, this yields 90° or 0° polarization. If a QWP, this yields circular polarization.
27
How not to use a wave plate
If the input polarization is parallel to the wave plate principal axes, no polarization rotation occurs! 0° or 90° Polarizer ±45° Polarizer Wave plate w/ axes at 0° or 90° Wave plate w/ axes at ±45° This arrangement can, however, be useful. In high-power lasers, we desire to keep the laser from lasing and then abruptly allow it to do so. In this case, we switch between this and the previous case.
28
Thickness of wave plates
When a wave plate has less than 2p relative phase delay, we say it’s a zero-order wave plate. Unfortunately, they tend to be very thin. Solve for d to find the thickness of a zero-order quarter-wave plate: d Using green light at 500 nm and quartz, whose refractive indices are ne – no = – = , we find: d = 13.7 mm This is so thin that it is very fragile and very difficult to manufacture.
29
Multi-order wave plates
A multi-order wave plate has more than 2p relative phase delay. We can design a twentieth-order quarter-wave plate with 20¼ waves of relative phase delay, instead of just ¼: d d = 561 mm This is thicker, but it’s now 41 times more wavelength dependent! It’s also temperature dependent due to n’s dependence on temperature.
30
A thick zero-order wave plate
Input beam Optic axes x y z Output d1 d2 The first plate is cut with fast and slow axes opposite to those of the second one. The Jones vector becomes: First plate Second plate Now, as long as d1 – d2 is equal to the thin zero-order wave plate, this optic behaves like the prohibitively thin one! This is ideal.
31
Polarization Mode Dispersion plagues broadband optical-fiber communications.
Imagine just a tiny bit of birefringence, Dn, but over a distance of 1000 km… Distance Polarization state at receiver = A “Hinge” Model for the Temporal Dynamics of Polarization Mode Dispersion Image with permission from Misha Brodsky, Misha Boroditsky, Peter Magill, Nicholas Frigo, Moshe Tur*, AT&T Labs –Research * Tel Aviv University If l = 1.5 mm, then Dn ~ can rotate the polarization by 90º! Newer fiber-optic systems detect only one polarization and so don’t see light whose polarization has been rotated to the other. Worse, as the temperature changes, the birefringence changes, too.
32
Circular polarizers Quarter wave plate (QWP) ±45° Polarizer
A circular polarizer makes circularly polarized light by first linearly polarizing it and then rotating it to circular. This involves a linear polarizer followed by a quarter wave plate Unpolarized input light Additional QWP and linear polarizer comprise a circular "analyzer." 45° Polarizer QWP -45° polarized light 45° Polarizer QWP 45° polarized light Circularly polarized light
33
Polarization Spectroscopy
0 polarizer 90 polarizer Yellow filter (rejects red) The 45°-polarized Pump pulse re-orients molecules, which induces some birefringence into the medium, which then acts like a wave plate for the Probe pulse until the molecules re-orient back to their initial random distribution.
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.