Download presentation
Presentation is loading. Please wait.
1
Efficient Simulations of Gas-Grain Chemistry Using Moment Equations M.Sc. Thesis by Baruch Barzel preformed under the supervision of Prof. Ofer Biham
2
2 Complexity in the Universe
3
3 Horse-Head Nebula
4
The Interstellar Clouds (ISC)
5
The Interstellar Clouds Molecular and atomic H Density: ~10 -1000 (atoms cm -3 ) Gas Temperature: 50 -150 K
6
6 The Role of H 2 H2H2 Complexity Complex Molecules Star Formation
7
7 The H 2 Puzzle H 2 Production in the gas phase: H + H → H 2 Gas-Phase Reactions Cannot Account for the Observed Production Rates Observed Production Rates in ISC: R H ~ 10 -15 (mol cm -3 s -1 ) 2
8
8 The Solution
9
9 The Interstellar Dust Grains Composition: Carbons, Silicates, Olivine, H 2 O, SiC Temperature: ~5-20 K Size Range: 10 -6 -10 -3 (cm) → 100-10 8 sites Activation Energies: (meV) E 1 (disorp)E 0 (diffus)Material 56.744.0Carbon 32.124.7Olivine
10
10 kBTkBT -E0-E0 A H = (1/S) e = F H - W H ‹ N H › - 2A H ‹ N H › 2 d ‹ N H › dt The Rate Equation Incoming flux Desorption Recombination W H = e kBTkBT -E1-E1 The Production Rate of H 2 Molecules: R H = A H ‹ N H › 2 (mol s -1 ) 2
11
11 Mean-field approximation = F H - W H ‹ N H › - 2A H ‹ N H › 2 d ‹ N H › dt When the Rate Equation Fails Neglects fluctuations Ignores discretization Not valid for small grains and low flux
12
12 Probabilistic Approach P(0) P(1) P(N H -1) P(N H ) P(N H +1) P(N H +2) P(N max ) Flux term: F H [P H (N H -1) - P H (N H )] Desorption term: W H [(N H +1)P H (N H +1) - N H P H (N H )] Reaction term: A H [(N H +2)(N H +1)P H (N H +2) - N H (N H -1)P H (N H )] FHFH WHWH AHAH
13
13 The Master Equation = F H [P H (N H -1) - P H (N H )] + W H [(N H +1)P H (N H +1) - N H P(N H )] + A H [(N H +2)(N H +1)P H (N H +2) - N H (N H -1)P H (N H )] dP H (N H ) dt ‹ N H › = N H P H (N H ) N H = 0 S R H = A H ( ‹ N H 2 › - ‹ N H › ) 2
14
14 R H vs. Grain Size 2 F H = 10 -10 S (atoms s -1 ) E 0 = 22 E 1 =32 (meV) T surface = 10 K
15
15 Complex Reactions OHO2O2 H2H2 O H H2OH2O The parameters: F i ; W i ; A i (i=1,2,3) 13 2
16
16 The Rate Equations = F 1 - W 1 ‹ N 1 › - 2A 1 ‹ N 1 › 2 - (A 1 +A 2 ) ‹ N 1 ›‹ N 2 › - (A 1 +A 3 ) ‹ N 1 ›‹ N 3 › d ‹ N 1 › dt = F 2 – W 2 ‹ N 2 › - 2A 2 ‹ N 2 › 2 - (A 1 +A 2 ) ‹ N 1 ›‹ N 2 › d ‹ N 2 › dt = F 3 - W 3 ‹ N 3 › - (A 1 +A 3 ) ‹ N 1 ›‹ N 3 › +(A 1 +A 2 ) ‹ N 1 ›‹ N 2 › d ‹ N 3 › dt
17
17 The Master Equation P(N 1,N 2,N 3 ) = F i [P(…,N i -1,…)-P(N 1,N 2,N 3 )] + W i [(N i +1)P(..,N i +1,..)-N i P(N 1,N 2,N 3 )] + A i [(N i +2)(N i +1)P(..,N i +2,..)-N i (N i -1)P(N 1,N 2,N 3 )] + (A 1 +A 2 )[(N 1 +1)(N 2 +1)P(N 1 +1,N 2 +1,N 3 -1)-N 1 N 2 P(N 1,N 2,N 3 ) + (A 1 +A 3 )[(N 1 +1)(N 3 +1)P(N 1 +1,N 2,N 3 +1)-N 1 N 3 P(N 1,N 2,N 3 ) 3 i=1 3 i=1 2 i=1
18
18 P(N 1,N 2,N 3 ) = F i [P(…,N i -1,…)-P(N 1,N 2,N 3 )] + W i [(N i +1)P(..,N i +1,..)-N i P(N 1,N 2,N 3 )] + A i [(N i +2)(N i +1)P(..,N i +2,..)-N i (N i -1)P(N 1,N 2,N 3 )] + (A 1 +A 2 )[(N 1 +1)(N 2 +1)P(N 1 +1,N 2 +1,N 3 -1)-N 1 N 2 P(N 1,N 2,N 3 ) + (A 1 +A 3 )[(N 1 +1)(N 3 +1)P(N 1 +1,N 2,N 3 +1)-N 1 N 3 P(N 1,N 2,N 3 ) 3 i=1 3 i=1 2 i=1 R ij = (A i + A j ) ‹ N i N j › R ii = A i ( ‹ N i 2 › - ‹ N i › )
19
19 The Rate vs. The Master Rate equations: Mean field approximation High efficiency Not reliable for surface reactions (at low coverage) Master equation: Microscopic probability distribution Accurate model of grain surface reactions Low efficiency (exponential growth) Hard work
20
20 The Moment Equations ‹ N H k › = N H k P H (N H ) NH=0NH=0 8 After applying the summation: ‹ N H › = F H + (2A H - W H ) ‹ N H › - 2A H ‹ N H 2 › ‹ N H 2 › = F H + (2F H + W H - 4A H ) ‹ N H › + (8A H - W H ) ‹ N H 2 › - 4A H ‹ N H 3 ›
21
21 Truncating the Equations 1. Set the cutoff 2. Express the (k+1)th moment by the first k moments ‹ N H 1 › = P H (1) + 2P H (2) + +kP H (k) ‹ N H 2 › = P H (1) + 2 2 P H (2) + +k 2 P H (k) ‹ N H k › = P H (1) + 2 k P H (2) + +k k P H (k) P H (N H > k) = 0
22
22 Truncating the Equations 1. Set the cutoff 2. Express the (k+1)th moment by the first k moments 3. Plug into the first k moment equations ‹ N H 1 › = P H (1) + 2P H (2) + + kP H (k) ‹ N H 2 › = P H (1) + 2 2 P H (2) + +k 2 P H (k) ‹ N H k › = P H (1) + 2 k P H (2) + +k k P H (k) P H (N H > k) = 0 ‹ N H k+1 › = C i ‹ N H i › i=0 k
23
23 Moment Equations for H 2 Production ‹ N H › = F H + (2A H - W H ) ‹ N H › - 2A H ‹ N H 2 › ‹ N H 2 › = F H + (2F H + W H - 4A H ) ‹ N H › + (8A H - W H ) ‹ N H 2 › - 4A H ‹ N H 3 › 1. Set the cutoff → k=2 ‹ N H 3 › = 3 ‹ N H 2 › - 2 ‹ N H › 2. Reduce excessive moments → 3. Plug into the equations…
24
24 ‹ N H › = F H + (2A H - W H ) ‹ N H › - 2A H ‹ N H 2 › ‹ N H 2 › = F H + (2F H + W H - 4A H ) ‹ N H › + (8A H - W H ) ‹ N H 2 › - 4A H ‹ N H 3 › ‹ N H › = F H + (2A H - W H ) ‹ N H › - 2A H ‹ N H 2 › ‹ N H 2 › = F H + (2F H + W H + 4A H ) ‹ N H › - (4A H + 2W H ) ‹ N H 2 › Moment Equations for H 2 Production ‹ N H 3 › = 3 ‹ N H 2 › - 2 ‹ N H › 1. Set the cutoff → k=2 2. Reduce excessive moments → 3. Plug into the equations…
25
25 R H vs. Grain Size 2
26
26 Moments for Complex Networks OH O2O2 H2H2 O H H2OH2O The probability: P(N 1,N 2,N 3 ) The moments: ‹ N 1 a N 2 b N 3 c › The cutoff: N i < k i The challenge: Reduction of the excessive moments ‹ N 1 a N 2 b N 3 c › = C lnm ‹ N 1 l N 2 n N 3 m › lmn=0 k-1
27
27 Reduction of Excessive Moments The probability: P(N 1,N 2 ) V(a,b) M (N 1,N 2,a,b) P(N 1,N 2 ) v = M p ‹ N 1 a N 2 b › = C nm ‹ N 1 n N 2 m › mn=0 k-1 ‹ N 1 a N 2 b › = N 1 a N 2 b P(N 1,N 2 ) N 1 N 2 =0 k-1
28
28 ‹N1›,‹N1›, ‹N3›‹N3›‹N2›,‹N2›, Setting the Cutoffs OHO2O2 H2H2 O H H2OH2O ‹N1N2›‹N1N2› ‹N1N3›‹N1N3› ‹N22›‹N22› ‹N12›‹N12› 3 vertices + 2 edges + 2 loops = 7 equations
29
29 Production Rates vs. Grain Size
30
30 Multi-Specie Network H 2 COH 3 CO OH HCOH OCO CO 2 + H O2O2 H2H2 HCO H 2 CO OH CO 2 H 3 COCH 3 CO H2OH2O 7 vertices 8 edges 2 loops 17 equations +
31
31 Production Rates vs. Grain Size
32
32 Summary The advantages of the moment equations: Reliable even for low coverage Efficient Linear Easy to incorporate into rate equation models Directly generate the required moments Further applications should be tested.
33
33 Revealing the Trick The moment equations validity - For small grainsFor large grainsCutoff justifiedP H (N H ) is Poisson Second order: ( << 1) The equations are valid First order: ( ≈ 1) Production rate is accurate but population size maydeviate Moment equations valid under all circumstances
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.