Download presentation
Presentation is loading. Please wait.
1
Embedded Computer Architecture 5KK73 TU/e Henk Corporaal Bart Mesman Data Memory Management Part b: Loop transformations & Data Reuse
2
Thanks to the IMEC DTSE experts: Erik Brockmeyer IMEC, Leuven, Belgium and also Martin Palkovic, Sven Verdoolaege, Tanja van Achteren, Sven Wuytack, Arnout Vandecappelle, Miguel Miranda, Cedric Ghez, Tycho van Meeuwen, Eddy Degreef, Michel Eyckmans, Francky Catthoor, e.a.
3
@HC 5KK73 Embedded Computer Architecture3 DM methodology Dataflow Transformations Analysis/Preprocessing Loop/control-flow transformations Data Reuse Storage Cycle Budget Distribution Memory Allocation and Assignment Memory Layout organisation C-out C-in Address optimization
4
@HC 5KK73 Embedded Computer Architecture4 for (i=0; i < 8; i++) A[i] = …; for (i=0; i < 8; i++) B[7-i] = f(A[i]); Location Time Production Consumption for (i=0; i < 8; i++) A[i] = …; B[7-i] = f(A[i]); Location Time Production Consumption Locality of Reference
5
@HC 5KK73 Embedded Computer Architecture5 Regularity for (i=0; i < 8; i++) A[i] = …; for (i=0; i < 8; i++) B[i] = f(A[7-i]); Location Time for (i=0; i < 8; i++) A[i] = …; for (i=0; i < 8; i++) B[7-i] = f(A[i]); Location Time Production Consumption
6
@HC 5KK73 Embedded Computer Architecture6 for (i=0; i < 8; i++) B[i] = f1(A[i]); for (i=0; i < 8; i++) C[i] = f2(A[i]); Location Time Consumption Location Time Consumption Enabling Reuse for (i=0; i < 8; i++) B[i] = f1(A[i]); C[i] = f2(A[i]);
7
@HC 5KK73 Embedded Computer Architecture7 How to do these loop transformations automatically? Requires cost function Requires technique Let's introduce some terminology - iteration spaces - polytopes - ordering vector, which determines the execution order
8
@HC 5KK73 Embedded Computer Architecture8 01 j 2345 0 i 1 2 3 4 5 Iteration space and polytopes // assume A[][] exists for (i=1; i<6; i++) { for (j=2; j<6; j++) { B[i][j] = g( A[i-1][j-2]); } --- iteration space --- consumption space --- production space --- dependency vector Polytope BPolytope A
9
@HC 5KK73 Embedded Computer Architecture9 Example with 3 polytopes A: for (i=1; i<=N; ++i) for (j=1; j<=N-i+1; ++j) a[i][j] = in[i][j] + a[i-1][j]; B: for (p=1; p<=N; ++p) b[p][1] = f( a[N-p+1][p], a[N-p][p] ); C: for (k=1; k<=N; ++k) for (l=1; l<=k; ++l) b[k][l+1] = g (b[k][l]); A B C Algorithm having 3 loops: j i k p l
10
@HC 5KK73 Embedded Computer Architecture10 Common iteration space for (i=1; i<=(2*N+1); ++i) for (j=1; j<=2*N; ++j) if (i>=1 && i =1 && j<=N-i+1) a[i][j] = in[i][j] + a[i-1][j]; if (i==N+1 && j>=1 && j<=N) b[j][1] = f( a[N-j+1][j], a[N-j][j] ); if (i>=N+2 && i<=2*N+1 && j>=N+1 && j<=N+k) b[i-N-1][j-N+1] = g (b[i-N-1][j-N]); j i 1 2*N+1 12*N Initial solution having a common iteration space: Bad locality Bad regularity Requires 2N memory locations Many dummy iterations Ordering vector
11
@HC 5KK73 Embedded Computer Architecture11 Cost function needed for automation Regularity Equal direction for dependency vectors Avoid that dependency vectors cross each other Good for storage size Temporal locality Equal length of all dependency vectors Good for storage size Good for data reuse
12
@HC 5KK73 Embedded Computer Architecture12 Regularity Regular Irregular
13
@HC 5KK73 Embedded Computer Architecture13 Bad regularity limits the ordering freedom j i 1 2*N+1 12*N Ordering freedom = 90 degrees
14
@HC 5KK73 Embedded Computer Architecture14 Locality estimates: a few options P C C C C P C C C C P = production C = consumption P C C C C C Dependency vector length is measure for locality Q: Which length is the best estimate? Sum{d i } Max {d i }Spanning tree didi
15
@HC 5KK73 Embedded Computer Architecture15 1.Affine loop transformations Rotation, skewing, interchange, reverse Only geometric information is needed 2.Polytope placement Translation Only geometric information is needed 3.Choose ordering vector Generate the code Three step approach for loop transformation tool Combined transformation:
16
@HC 5KK73 Embedded Computer Architecture16 A: (i: 1..N):: (j: 1.. N-i+1):: a[i][j] = in[i][j] + a[i-1][j]; C: (k: 1..N):: (l: 1..k):: b[N-k+1][l+1] = g( b[N-k+1][l] ); B: (p: 1..N):: b[p][1] = f( a[N-p+1][p], a[N-p][p] ); 1. Affine loop transformations 2. Polytope placement 3. Choose ordering vector Three step approach for loop transformation tool
17
@HC 5KK73 Embedded Computer Architecture17 Three step approach for loop transformation tool 1. Affine loop transformations 2. Polytope placement 3. Choose ordering vector
18
@HC 5KK73 Embedded Computer Architecture18 Three step approach for loop transformation tool 1. Affine loop transformations 2. Polytope placement = merging loops 3. Choose ordering vector
19
@HC 5KK73 Embedded Computer Architecture19 Choose optimal ordering vector Ordering Vector 1 Ordering Vector 2
20
@HC 5KK73 Embedded Computer Architecture20 From the Polyhedral model back to C for (j=1; j<=N; ++j) { for (i=1; i<=N-j+1; ++i) a[i][j] = in[i][j] + a[i-1][j]; b[j][1] = f( a[N-j+1][j], a[N-j][j] ); for (l=1; l<=j; ++l) b[j][l+1] = g( b[j][l] ); } 1. Affine loop transformations 2. Polytope placement 3. Choose ordering vector Optimized solution having a common iteration space: Optimal locality Optimal regularity Requires 2 memory locations
21
@HC 5KK73 Embedded Computer Architecture21 Scanner Loop trafo - cavity detection Gauss Blur y Gauss Blur x N x M X-Y Loop Interchange N x M From N x M to N x (2GB+1) buffer size X Y N x M
22
@HC 5KK73 Embedded Computer Architecture22 Loop trafo- cavity (1) 1 Transform: interchange 2 Translate: merge 3 Order
23
@HC 5KK73 Embedded Computer Architecture23 Loop trafo- cavity (2) 1 Transform: interchange 2 Translate: merge 3 Choose Order x-blur filter:
24
@HC 5KK73 Embedded Computer Architecture24 Scanner Loop trafo - cavity detection Gauss Blur y Gauss Blur x N x M · X-Y Loop Interchange N x M From N x M to N x (2GB+1) buffer size X Y N x M
25
@HC 5KK73 Embedded Computer Architecture25 Loop trafo- cavity (3) 2 Translate 1: 2 Translate 2: 3 Comparing different translations
26
@HC 5KK73 Embedded Computer Architecture26 Loop trafo- cavity (4) 3 3 Order += Combining (merging) multiple polytopes
27
@HC 5KK73 Embedded Computer Architecture27 Result on gauss filter for (y=0; y<M+GB; ++y) { for (x=0; x<N+GB; ++x) { if (x>=GB && x =GB && y<=M-1-GB) { gauss_x_compute = 0; for (k=-GB; k<=GB; ++k) gauss_x_compute += image_in[x+k][y]*Gauss[abs(k)]; gauss_x_image[x][y] = gauss_x_compute/tot; } else if (x<N && y<M) gauss_x_image[x][y] = 0; if (x>=GB && x =GB && (y-GB)<=M-1-GB) { gauss_xy_compute = 0; for (k=-GB; k<=GB; ++k) gauss_xy_compute += gauss_x_image[x][y-GB+k]* Gauss[abs(k)]; gauss_xy_image[x][y-GB] = gauss_xy_compute/tot; } else if (x =0 && (y-GB)<M) gauss_xy_image[x][y-GB] = 0;
28
@HC 5KK73 Embedded Computer Architecture28 Intermezzo Before we continue with data reuse, have a look at other loop transformations check the discussed slides !!
29
@HC 5KK73 Embedded Computer Architecture29 DM methodology Dataflow Transformations Analysis/Preprocessing Loop/control-flow transformations Data Reuse Storage Cycle Budget Distribution Memory Allocation and Assignment Memory Layout organisation C-out C-in Address optimization
30
@HC 5KK73 Embedded Computer Architecture30 Layer 1 Layer 2 Layer 3 Data paths Memory hierarchy and Data reuse 1. Determines reuse candidates 2. Combine reuse candidates into reuse chains 3. If multiple access statements/array combine into reuse trees 4. Determine number of layers (if architecture is not fixed) 5. Select candidates and assign to memory layers 6. Add extra transfers between the different memory layers (for scratchpad RAM; not for caches)
31
@HC 5KK73 Embedded Computer Architecture31 TI C55@200MHz example platform Register file + Core 4Kx16 dual 32x Total256Kb 1 elem in 1 cycle 16Kx16 ROM Offchip MAX: 8MBx16 SRAM/EPROM/ SDRAM/SBSRAM TMS320vc5510@200MHz Vdd= 1.5 V P = unknown 8x Total64Kb 2 elem in 1 cycle 4Kx16 dual 4Kx16 dual 4Kx16 sing 4Kx16 sing 4Kx16 sing ROM (Data/program/DMA) first 3 cycles, next 2 cycles It seems this can be in parallel with the 256Kb memory Bandwidth 100M words/S Bandwidth 400M words/s Size 32kB Size 320kB ROM partition Variable size RAM partition Bandwidth 50M words/s Size 16 MB Fixed size RAM partition Bandwidth 4.8Gwords/s Size 2x16 registers Processor partition BW: 50M Word/s single port L2 L0 L1 BW: 400M Word/s dual port
32
@HC 5KK73 Embedded Computer Architecture32 M P = 1 Exploiting Memory Hierarchy for reduced Power: principle Processor Data Paths Register File Processor Data Paths Register File A P = 1 #A = 100% P total (before) = 100%
33
@HC 5KK73 Embedded Computer Architecture33 P total (before) = 100% M P = 1 A A’ P = 0.3 100% 5% Exploiting Memory Hierarchy for reduced Power: principle P total (after) = 100%x0.01+10%x0.1+1%x1 = 3% M P = 1 A A’ P = 0.1 A’’ P = 0.01 100% 1% 10% Processor Data Paths Register File Processor Data Paths Register File
34
@HC 5KK73 Embedded Computer Architecture34 M Data reuse decision and memory hierarchy: principle Processor Data Paths Register File Processor Data Paths Register File BABA A’A’’ customized connections Customized connections in the memory subsystem to bypass the memory hierarchy and avoid the overhead.
35
@HC 5KK73 Embedded Computer Architecture35 Step 1: identify arrays with data reuse potential for (i=0; i<4; i++) for (j=0; j<3; j++) for (k=0; k<6; k++) … = A[i*4+k]; time copy3 copy4 copy1 copy2 Time frame 1Time frame 2Time frame 3Time frame 4 array index intra-copy reuse inter-copy reuse
36
@HC 5KK73 Embedded Computer Architecture36 Importance of high level cost estimate for (i=0; i<4; i++) for (j=0; j<3; j++) for (k=0; k<6; k++) … = A[i*4+k]; time copy3 copy4 copy1 copy2 Time frame 1Time frame 2Time frame 3Time frame 4 array index 6 Mk Array copies are stored in-place!
37
@HC 5KK73 Embedded Computer Architecture37 Step 1: determine gains Intra-copy reuse factor for (i=0; i<4; i++) for (j=0; j<3; j++) for (k=0; k<6; k++) … = A[i*4+k]; time copy3 copy4 copy1 copy2 Time frame 1Time frame 2Time frame 3Time frame 4 array index 6 Mk intra-copy reuse factor= 3 j iterator =not present so intra-copy reuse 3
38
@HC 5KK73 Embedded Computer Architecture38 Step 1: determine gains Inter-copy reuse factor time copy3 copy4 copy1 copy2 Time frame 1Time frame 2Time frame 3Time frame 4 array index inter-copy reuse factor = 1/(1-1/3)=3/2 6 Mk for (i=0; i<n; i++) for (j=0; j<3; j++) for (k=0; k<6; k++) … = A[i*4+k]; for (i=0; i<4; i++) for (j=0; j<3; j++) for (k=0; k<6; k++) … = A[i*4+k]; i iterator has smaller weight than k range so inter-copy reuse
39
@HC 5KK73 Embedded Computer Architecture39 5 Mm tf 1tf 2tf 3tf 4tf 5tf 6tf 7tf 8tf 9 Possibility for multi-level hierarchy array index time for (i=0; i<10; i++) for (j=0; j<2; j++) for (k=0; k<3; k++) for (l=0; l<3; l++) for (m=0; m<5; m++) … = A[i*15+k*5+m]; Mk 15 time frame 1time frame 2 5 Mm tf 1.1tf 1.2tf 1.3tf 1.4tf 1.5tf 1.6tf 2.1tf 2.2tf 2.3
40
@HC 5KK73 Embedded Computer Architecture40 Step 2: determine data reuse chains for each memory access R1(A) A A’ R1(A) A A’ R1(A) A A’ A’’ Many reuse possibilities Cost estimate needed Prune for promising ones R1(A) A
41
@HC 5KK73 Embedded Computer Architecture41 Cost function needs both size and number of accesses to intermediate array for (i=0; i<10; i++) for (j=0; j<2; j++) for (k=0; k<3; k++) for (l=0; l<3; l++) for (m=0; m<5; m++) … = A[i*15+k*5+m]; Gk 15 5 Gm estimate #misses from different levels for one iteration of i R1(A) 2*3*3*5 =90 A’ 3*5 =15 A’ 2*3*5 =30 estimate size 05101520 # elements 0 20 40 60 80 100 #misses
42
@HC 5KK73 Embedded Computer Architecture42 R1(A) A A’ R1(A) A A’ R1(A) A A’ A’’ R1(A) A 30 90 15 30 90 3015 120 105 45 120 150 5 15 5 135 4522 6 16 7 6 135 5138 35 150 155165 170 Very simplistic power and area estimation for different data-reuse versions x y z accesses size energy
43
@HC 5KK73 Embedded Computer Architecture43 R1(A) A A’ A’’ for (i=0; i<10; i++) for (j=0; j<2; j++) for (k=0; k<3; k++) for (l=0; l<3; l++) for (m=0; m<5; m++) … = A[i*15+k*5+m]; Step 3: determine data reuse trees for multiple accesses R2(A) A A’ for (x=0; x<8; x++) for (y=0; y<5; y++) … = A[i*5+y];
44
@HC 5KK73 Embedded Computer Architecture44 R1(A) A A’ A’’ R2(A) A A’ Reuse tree A R1(A) A’ A’’ R2(A) A’ Step 3: determine data reuse trees for multiple accesses
45
@HC 5KK73 Embedded Computer Architecture45 Step 4: Determine number of layers Data reuse trees A Data reuse trees B Hierarchy layers Layer1 Layer2 Layer3 Foreground mem. Datapath
46
@HC 5KK73 Embedded Computer Architecture46 Step 5: Select and assign reuse candidates Data reuse trees Hierarchy layers hierarchy assignments 1 2 3 FG A A 4 A 5 all
47
@HC 5KK73 Embedded Computer Architecture47 Step 5: All freedom in array to memory hierarchy Data reuse trees A Hierarchy layers Data reuse trees B
48
@HC 5KK73 Embedded Computer Architecture48 Step 5: Prune reuse graph (platform independent) Hierarchy layers Full freedom Hierarchy layers Pruned Quite some solutions never make sense
49
@HC 5KK73 Embedded Computer Architecture49 Step 5: Prune reuse graph further (platform dependent) Hierarchy layers Pruned FG Final solution 4 layer platform A B B' A' FG Final solution 4 layer platform
50
@HC 5KK73 Embedded Computer Architecture50 Assign all data reuse trees (multiple arrays) to memory hierarchy A R1(A) A’ A’’ R2(A) A’ R1(B) B B’ B’’ B’’’ Layer 1 Layer 2 Layer 3 A R1(A) A’ A’’ R2(A) A’ R1(B) B B’ B’’’
51
@HC 5KK73 Embedded Computer Architecture51 Data Reuse on 1D horizontal convolution How to make explicit copies? init buffer reuse data new data Image NxM, traversed row order
52
@HC 5KK73 Embedded Computer Architecture52 int in[H][W+8], out[H][W]; const int c[] = {1,0,1,2,2,1,0,1}; for (r=0; r < H; r++) for (c=0; c < W; c++) for (dc=0; dc < 8; dc++) out[r][c] += in[r][c+dc]*c[dc]; int in[H][W+8], out[H][W], buf[8]; const int c[] = {1,0,1,2,2,1,0,1}; for (r=0; r < H; r++) for (i=0; i<7; i++) buf[i]=in[r][i]; for (c=0; c < W; c++) buf[(c+7)%8] = in[r][c+7]; for (dc=0; dc < 8; dc++) out[r][c] += buf[(c+dc)%8]*c[dc]; Introducing 1D reuse buffer Reuse Factor =7intermediate level decl. additional copyinitial copyreread from buffer
53
@HC 5KK73 Embedded Computer Architecture53 Introducing line buffers for vertical filtering whole image size[N][M] set of lines [2GB+1] Why keep the whole image in that case? [N]
54
@HC 5KK73 Embedded Computer Architecture54 Simplified “reuse script” 1. Identify arrays with sufficient reuse potential 2. Determine reuse chains and prune these (for every array read) 3. Determine reuse trees and prune these (for every array) 4. Determine reuse graph including bypasses and prune (for entire application) 5. Determine memory hierarchy layout assignment incorporating given background memory restrictions (layers) and real-time constraints 6. Introduce copies in code: init, update, use code For scratchpad memories only For caches we need a different approach
55
@HC 5KK73 Embedded Computer Architecture55 Data re-use trees: cavity detector N*M N*1 3*1 image_in N*3 1*3 gauss_x N*3 3*3 gauss_xy/comp_edge N*3 1*1 N*M*3 N*M N*M*3 N*M image_out 0 N*M*8 ¸ CPU Array reads: Array write:
56
@HC 5KK73 Embedded Computer Architecture56 Memory hierarchy assignment: cavity detector N*M 3*1 image_in N*3 gauss_x gauss_xycomp_edgeimage_out 3*3 1*1 3*3 1*1 L1 N*M N*M*3 N*M 0 N*M*3 N*M N*M*3N*M*8 N*3 L2 L0 1MB SDRAM 16KB Cache 128 B RegFile ¸
57
@HC 5KK73 Embedded Computer Architecture57 Data reuse & memory hierarchy (to external memory)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.