Download presentation
Presentation is loading. Please wait.
1
Anonymity and Robustness in Encryption Schemes Payman Mohassel University of Calgary
2
Public Key Encryption (PKE) pk (pk, sk) KG C = Enc(pk,m) m = Dec(sk,C) PKE = (KG, Enc, Dec) 2
3
Traditional Security Notions (Data Secrecy) Semantic security – No function of the message is leaked – Equivalent to indistinguishability Non-malleability – Hard to create ciphertext for related messages Chosen plaintext attacks (CPA) Chosen ciphertext attacks (CCA)
4
Mobile Communication Mobile User Base Station key exchange eavesdropper wants to learn identity of mobile user Enc(pk, message) pk
5
Secure Auction [Sako’00] First practical auction to hide bid values Keys correspond to bid values A known message is encrypted using the key Hiding a bid value requires hiding the key
6
(pk, sk) c c c = Enc(pk, m) c Dec(sk’, c) =
7
Other Guarantees Does the ciphertext hide the key? – Anonymity What happens when decrypting using a different key? – Robustness
8
ANON-CCA Challenger (pk 0, sk 0 ) KG(1 n ) (pk 1, sk 1 ) KG(1 n ) b {0,1} pk 0, pk 1 c 1, b 1 Dec(sk b1, c 1 ).... c i, b i Dec(sk bi, c i ) m C=Enc(pk b,m) b’ Adv anon-cca,PKE (A) =|Pr[b’ = b] – ½| is negligible c i+1, b i+1 Dec(sk bi+1, c 1 ).... c q, b q Dec(sk bq, c q )
9
Weak Robustness (WROB-CCA) M (pk 0, sk 0 ) KG(1 n ) (pk 1, sk 1 ) KG(1 n ) pk 0, pk 1 c i, b i Dec(sk bi, c i ).... Challenger Adv wins if Dec(sk 1, C) ≠, where C = Enc(pk 0,M)
10
Strong Robustness (SROB-CCA) C (pk 0, sk 0 ) KG(1 n ) (pk 1, sk 1 ) KG(1 n ) pk 0, pk 1 c i, b i Dec(sk bi, c i ).... Challenger Adv wins if Dec(sk 0,C) ≠ and Dec(pk 1,C) ≠
11
What is Known? Anonymity – Not always satisfied – y = x e mod N for random x – pk 0 = (N 0, e 0 ) pk 1 = (N 1, e 1 ), N 1 > N 0 – If y > N 0 return pk 1 else return pk 0 Robustness – ElGamal is not robust – [pk 0 = (G, p, g, g x ), sk 0 = x], [pk 1 = (G, p, g, g y ), sk 1 = y] – Enc(pk 0, m) = (c 1, c 2 ) = (g r, mg xr ) – m’ = Dec(sk 1, (c 1, c 2 )) = c 2 /c 1 y = mg (x-y)r
12
What is Known? Anonymous PKE and IBE – [Bellare et al. 2001], [Abdalla et al. 2008] – PKE: DHIES, [Cramer-Shoup’01] – IBE: [Boneh-Franklin’01], [Boyen-Waters’06] Robust PKE and IBE – [Abdalla et al. 2010] Strongly robust IBE: [Boneh-Franklin’01] Weakly robust PKE: DHIES, [Cramer-Shoup’01] Not robust: [Boyen-Waters’06]
13
Our Contribution Studying anonymity of hybrid encryption – Positive and negative results More efficient transformations for robust encryption schemes – Please see the paper
14
Question: Given an “anonymous PKE/IBE” and an “anonymous SKE”, is the hybrid encryption scheme also anonymous?
15
Anonymity of Hybrid Encryption ANON-CPA PKE/IBE + IND-CPA SKE – The hybrid encryption is ANON-CPA [negative] ANON-CCA PKE/IBE + IND-CCA SKE – The hybrid encryption is NOT always ANON-CCA – True if SKE is ANON-CCA or more [positive] (WROB + ANON)-CCA PKE/IBE + AE SKE – The hybrid encryption is ANON-CCA – More evidence that “anonymity” and “robustness” are needed simultaneously
16
Counter Example (PKE) Start with (WROB + ANON)-CCA PKE 1 – PKE 1 = (KG 1, Enc 1, Dec 1 ) Build PKE 2 = (KG 2, Enc 2, Dec 2 ) – Dec 2 Run Dec 1, if it returns return 0 n Else return what Dec 1 outputs PKE 2 is still ANON-CCA
17
Counter Example (SKE) We use a key-binding IND-CCA SKE Key-binding SKE = (K, SE, SD) – For any k K, randomness r, and message m – There is no k’ ≠ k where SD k’ (SE k (m,r)) ≠ PKE 2 + key-binding SKE – Not ANON-CCA
18
Counter Example m (c 1, c 2 ) = (Enc 2 (pk b,k), SE(k,m)) Challenger (pk 0, sk 0 ) KG(1 n ) (pk 1, sk 1 ) KG(1 n ) b {0,1} Decryption query under pk 0 for (c 1, SE(0 n,m’)) pk 0, pk 1 If the answer is let b’ = 0, else b’ = 1 b’
19
Counter Example Requiring stronger security notions for SKE does NOT help – If it can be combined with key-binding What about stronger notions for the PKE?
20
Positive Result Claim: If PKE is (ANON + WROB + IND)-CCA and SKE is a (one-time) authenticated encryption, the hybrid construction is (ANON + IND)-CCA
21
Game 0 Challenger (pk 0, sk 0 ) KG(1 n ) (pk 1, sk 1 ) KG(1 n ) b {0,1} pk 0, pk 1 C 1, b 1 Dec(sk b1, C 1 ).... C i, b i Dec(sk bi, C i ) m c* 1 = Enc(pk b,k*) c* 2 = SE(k*,m) b’ Adv anon-cca,PKE (A) =|Pr[b’ = b] – ½| is negligible C i+1, b i+1 Dec(sk b1, C 1 ).... C q, b q Dec(sk bq, C q )
22
Game 1 Challenger (pk 0, sk 0 ) KG(1 n ) (pk 1, sk 1 ) KG(1 n ) b {0,1} pk 0, pk 1 m c* 1 = Enc(pk b, k*) c* 2 = SE(k*, m) b’ (c* 1, c 2 ≠ c* 2 ), b SD(k*, c 2 ) Difference in games: decryption error
23
Game 2 Challenger (pk 0, sk 0 ) KG(1 n ) (pk 1, sk 1 ) KG(1 n ) b {0,1} pk 0, pk 1 m c* 1 = Enc(pk b,k*) c* 2 = SE(k*,m) b’ (c* 1, c 2 ≠ c* 2 ), 1-b Difference in games: weak robustness of the PKE only if c* 1 decrypts under pk b and pk 1-b
24
Game 3 Challenger (pk 0, sk 0 ) KG(1 n ) (pk 1, sk 1 ) KG(1 n ) b {0,1} pk 0, pk 1 m c* 1 = Enc(pk b,k*) c* 2 = SE(k’,m) b’ Difference in games: IND-CCA security of the PKE
25
Game 4 Challenger (pk 0, sk 0 ) KG(1 n ) (pk 1, sk 1 ) KG(1 n ) b {0,1} pk 0, pk 1 m c* 1 = Enc(pk b,k*) c* 2 = SE(k’,m) b’ Difference in games: CTXT integrity of the SKE only if a valid ciphertext under k’ is generated (c* 1, c 2 ≠ c* 2 ), {b or 1-b}
26
Putting Things Together Adv anon-cca (hybrid) < Adv wrob-cca (PKE) + Adv ind-cca (PKE) + Adv ctxt-int (SKE) + Adv anon-cca (PKE) Boneh-Franklin, Cramer-Shoup, DHIES are WROB- CCA Boyen-Waters IBE is not
27
Summary ANON-CCA PKE + (…) SKE ANON-CCA hybrid (WROB + ANON)-CCA PKE + AE SKE ANON- CCA hybrid Is weak-robustness a necessary condition? Is Boyen-Waters (in)secure when used in a hybrid construction?
28
Thank you
29
Results on Robustness [Abdalla et al.’10] – Transforming ANON-CCA schemes to robust ones We design more efficient transformations – Refer to the paper
30
Indentity-based encryption (IBE) id (sk,pk) PKG C = Enc pk (m) m = Dec sk (C) IBE = (MKG, Enc, Dec) 30 (par, msk) MKG
31
IND-CCA Challenger c1c1 (pk, sk) KG(1 n ) ; b {0,1} Dec sk (c 1 ).... cici Dec sk (c i ) m 0, m 1 C=Enc pk (m b ) c i+1 Dec sk (c i+1 ).... cqcq Dec sk (c q ) b’ Adv ind-cca,PKE (A) =|Pr[b’ = b] – ½| is negligible 31
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.