Presentation is loading. Please wait.

Presentation is loading. Please wait.

Penn ESE680-002 Spring 2007 -- DeHon 1 ESE680-002 (ESE534): Computer Organization Day 18: March 21, 2007 Interconnect 6: MoT.

Similar presentations


Presentation on theme: "Penn ESE680-002 Spring 2007 -- DeHon 1 ESE680-002 (ESE534): Computer Organization Day 18: March 21, 2007 Interconnect 6: MoT."— Presentation transcript:

1 Penn ESE680-002 Spring 2007 -- DeHon 1 ESE680-002 (ESE534): Computer Organization Day 18: March 21, 2007 Interconnect 6: MoT

2 Penn ESE680-002 Spring 2007 -- DeHon 2 Previously HSRA/BFT – natural hierarchical network –Switches scale O(N) Mesh – natural 2D network –Switches scale  (N p+0.5 )

3 Penn ESE680-002 Spring 2007 -- DeHon 3 Today Good Mesh properties HSRA vs. Mesh MoT Grand unified network theory –MoT vs. HSRA –MoT vs. Mesh

4 Penn ESE680-002 Spring 2007 -- DeHon 4 Mesh 1.Wire delay can be Manhattan Distance 2.Network provides Manhattan Distance route from source to sink

5 Penn ESE680-002 Spring 2007 -- DeHon 5 HSRA/BFT Physical locality does not imply logical closeness

6 Penn ESE680-002 Spring 2007 -- DeHon 6 HSRA/BFT Physical locality does not imply logical closeness May have to route twice the Manhattan distance

7 Penn ESE680-002 Spring 2007 -- DeHon 7 Tree Shortcuts Add to make physically local things also logically local Now wire delay always proportional to Manhattan distance May still be 2  longer wires

8 Penn ESE680-002 Spring 2007 -- DeHon 8 BFT/HSRA ~ 1D Essentially one- dimensional tree –Laid out well in 2D

9 Penn ESE680-002 Spring 2007 -- DeHon 9 Consider Full Population Tree ToM Tree of Meshes

10 Penn ESE680-002 Spring 2007 -- DeHon 10 Can Fold Up

11 Penn ESE680-002 Spring 2007 -- DeHon 11 Gives Uniform Channels Works nicely p=0.5 Channels log(N) [Greenberg and Leiserson, Appl. Math Lett. v1n2p171, 1988]

12 Penn ESE680-002 Spring 2007 -- DeHon 12 Gives Uniform Channels (and add shortcuts)

13 Penn ESE680-002 Spring 2007 -- DeHon 13 How wide are channels?

14 Penn ESE680-002 Spring 2007 -- DeHon 14 How wide are channels?

15 Penn ESE680-002 Spring 2007 -- DeHon 15 How wide are channels? A constant factor wider than lower bound! P=2/3  ~8 P=3/4  ~5.5

16 Penn ESE680-002 Spring 2007 -- DeHon 16 Implications Tree never requires more than constant factor more wires than mesh –Even w/ the non-minimal length routes –Even w/out shortcuts Mesh global route upper bound channel width is O(N p-0.5 ) –Can always use fold- squash tree as the route –Matches lower bound!

17 Penn ESE680-002 Spring 2007 -- DeHon 17 MoT

18 Penn ESE680-002 Spring 2007 -- DeHon 18 Recall: Mesh Switches Switches per switchbox: –6w/L seg Switches into network: –(K+1) w Switches per PE: –6w/L seg + Fc  (K+1) w –w = cN p-0.5 –Total  N p-0.5 Total Switches: N*(Sw/PE)  N p+0.5 > N

19 Penn ESE680-002 Spring 2007 -- DeHon 19 Recall: Mesh Switches Switches per PE: –6w/L seg + Fc  (K+1) w –w = cN p-0.5 –Total  N p-0.5 Not change for –Any constant Fc –Any constant L seg

20 Penn ESE680-002 Spring 2007 -- DeHon 20 Mesh of Trees Hierarchical Mesh Build Tree in each column [Leighton/FOCS 1981]

21 Penn ESE680-002 Spring 2007 -- DeHon 21 Mesh of Trees Hierarchical Mesh Build Tree in each column …and each row [Leighton/FOCS 1981]

22 Penn ESE680-002 Spring 2007 -- DeHon 22 Mesh of Trees More natural 2D structure Maybe match 2D structure better? –Don’t have to route out of way

23 Penn ESE680-002 Spring 2007 -- DeHon 23 MoT Parameterization: P P=0.5 P=0.75

24 Penn ESE680-002 Spring 2007 -- DeHon 24 MoT Parameterization Support C with additional trees –(like BFT) C=1 C=2

25 Penn ESE680-002 Spring 2007 -- DeHon 25 Mesh of Trees Logic Blocks –Only connect at leaves of tree Connect to the C trees –Per side –4C total

26 Penn ESE680-002 Spring 2007 -- DeHon 26 Switches Total Tree switches –2 C  N×(switches/tree) –2={X,Y} –C per Row and Col.

27 Penn ESE680-002 Spring 2007 -- DeHon 27 Switches Total Tree switches –2 C  N× (switches/tree) Sw/Tree:

28 Penn ESE680-002 Spring 2007 -- DeHon 28 Switches Total Tree switches –2 C  N× (switches/tree) Sw/Tree:

29 Penn ESE680-002 Spring 2007 -- DeHon 29 Switches Only connect to leaves of tree C  (K+1) switches per leaf Total switches  Leaf + Tree  O(N)

30 Penn ESE680-002 Spring 2007 -- DeHon 30 Wires Design: O(N p ) in top level Total wire width of channels: O(N p ) –Another geometric sum No detail route guarantee (at present) –Likely amenable to expander design (Day16)

31 Penn ESE680-002 Spring 2007 -- DeHon 31 Empirical Results Benchmark: Toronto 20 Compare to L seg =1, L seg =4 –CLMA ~ 8K LUTs Mesh(L seg =4): w=14  122 switches/LB MoT(p=0.67): C=4  89 switches/LB –Benchmark wide: 10% less CLMA largest Asymptotic advantage [Rubin,DeHon/FPGA2003]

32 Penn ESE680-002 Spring 2007 -- DeHon 32 Shortcuts Strict Tree –Same problem with physically far, logically close

33 Penn ESE680-002 Spring 2007 -- DeHon 33 Shortcuts Empirical –Shortcuts reduce C –But net increase in total switches

34 Penn ESE680-002 Spring 2007 -- DeHon 34 Staggering With multiple Trees –Offset relative to each other –Avoids worst-case discrete breaks –One reason don’t benefit from shortcuts

35 Penn ESE680-002 Spring 2007 -- DeHon 35 Flattening Can use arity other than two

36 Penn ESE680-002 Spring 2007 -- DeHon 36 [Rubin&DeHon/TRVLSI2004] Overall 26% fewer than mesh

37 Penn ESE680-002 Spring 2007 -- DeHon 37 [Rubin&DeHon/TRVLSI2004] Arity 5  42% fewer wires than arity 2

38 Penn ESE680-002 Spring 2007 -- DeHon 38 MoT Parameters Shortcuts Staggering Corner Turns – to come Arity

39 Penn ESE680-002 Spring 2007 -- DeHon 39 Day 6

40 Penn ESE680-002 Spring 2007 -- DeHon 40 Wire Layers = More Wiring Day 6

41 Penn ESE680-002 Spring 2007 -- DeHon 41 MoT Layout Main issue is layout 1D trees in multilayer metal

42 Penn ESE680-002 Spring 2007 -- DeHon 42 Row/Column Layout Geometric Progression  does not saturate via space!

43 Penn ESE680-002 Spring 2007 -- DeHon 43 Row/Column Layout

44 Penn ESE680-002 Spring 2007 -- DeHon 44 Composite Logic Block Tile

45 Penn ESE680-002 Spring 2007 -- DeHon 45 P=0.75 Row/Column Layout

46 Penn ESE680-002 Spring 2007 -- DeHon 46 P=0.75 Row/Column Layout

47 Penn ESE680-002 Spring 2007 -- DeHon 47 MoT Layout Easily laid out in Multiple metal layers –Minimal O(N p-0.5 ) layers Contain constant switching area per LB –Even with p>0.5

48 Penn ESE680-002 Spring 2007 -- DeHon 48 Relation?

49 Penn ESE680-002 Spring 2007 -- DeHon 49 How Related? What lessons translate amongst networks? Once understand design space –Get closer together Ideally –One big network design we can parameterize

50 Penn ESE680-002 Spring 2007 -- DeHon 50 MoT  HSRA (P=0.5)

51 Penn ESE680-002 Spring 2007 -- DeHon 51 MoT  HSRA (p=0.75)

52 Penn ESE680-002 Spring 2007 -- DeHon 52 MoT  HSRA A C MoT maps directly onto a 2C HSRA –Same p’s HSRA can route anything MoT can

53 Penn ESE680-002 Spring 2007 -- DeHon 53 HSRA  MoT Decompose and look at rows Add homogeneous, upper-level corner turns

54 Penn ESE680-002 Spring 2007 -- DeHon 54 HSRA  MoT

55 Penn ESE680-002 Spring 2007 -- DeHon 55 HSRA  MoT

56 Penn ESE680-002 Spring 2007 -- DeHon 56 HSRA  MoT

57 Penn ESE680-002 Spring 2007 -- DeHon 57 HSRA  MoT HSRA + HSRA T = MoT w/ H-UL-CT –Same C, P –H-UL-CT: Homogeneous, Upper-Level, Corner Turns

58 Penn ESE680-002 Spring 2007 -- DeHon 58 HSRA  MoT (p=0.75)

59 Penn ESE680-002 Spring 2007 -- DeHon 59 HSRA  MoT (p=0.75) Can organize HSRA as MoT P>0.5 MoT layout –Tells us how to layout p>0.5 HSRA

60 Penn ESE680-002 Spring 2007 -- DeHon 60

61 Penn ESE680-002 Spring 2007 -- DeHon 61 MoT vs. Mesh MoT has Geometric Segment Lengths Mesh has flat connections MoT must climb tree –Parameterize w/ flattening MoT has O(N p-0.5 ) fewer switches

62 Penn ESE680-002 Spring 2007 -- DeHon 62 MoT vs. Mesh Wires –Asymptotically the same (p>0.5) –Cases where Mesh requires constant less –Cases where require same number

63 Penn ESE680-002 Spring 2007 -- DeHon 63 [DeHon/TRVLSI2004]

64 Penn ESE680-002 Spring 2007 -- DeHon 64 Admin Interconnect assignment due today Retiming assignment out today –Monday lecture is key –Reading handed out last time for Monday

65 Penn ESE680-002 Spring 2007 -- DeHon 65 Big Ideas Networks driven by same wiring requirements –Have similar wiring asymptotes Can bound –Network differences –Worst-case mesh global routing Hierarchy structure allows to save switches –O(N) vs.  (N p+0.5 )


Download ppt "Penn ESE680-002 Spring 2007 -- DeHon 1 ESE680-002 (ESE534): Computer Organization Day 18: March 21, 2007 Interconnect 6: MoT."

Similar presentations


Ads by Google