Download presentation
Presentation is loading. Please wait.
1
Penn ESE680-002 Spring 2007 -- DeHon 1 ESE680-002 (ESE534): Computer Organization Day 18: March 21, 2007 Interconnect 6: MoT
2
Penn ESE680-002 Spring 2007 -- DeHon 2 Previously HSRA/BFT – natural hierarchical network –Switches scale O(N) Mesh – natural 2D network –Switches scale (N p+0.5 )
3
Penn ESE680-002 Spring 2007 -- DeHon 3 Today Good Mesh properties HSRA vs. Mesh MoT Grand unified network theory –MoT vs. HSRA –MoT vs. Mesh
4
Penn ESE680-002 Spring 2007 -- DeHon 4 Mesh 1.Wire delay can be Manhattan Distance 2.Network provides Manhattan Distance route from source to sink
5
Penn ESE680-002 Spring 2007 -- DeHon 5 HSRA/BFT Physical locality does not imply logical closeness
6
Penn ESE680-002 Spring 2007 -- DeHon 6 HSRA/BFT Physical locality does not imply logical closeness May have to route twice the Manhattan distance
7
Penn ESE680-002 Spring 2007 -- DeHon 7 Tree Shortcuts Add to make physically local things also logically local Now wire delay always proportional to Manhattan distance May still be 2 longer wires
8
Penn ESE680-002 Spring 2007 -- DeHon 8 BFT/HSRA ~ 1D Essentially one- dimensional tree –Laid out well in 2D
9
Penn ESE680-002 Spring 2007 -- DeHon 9 Consider Full Population Tree ToM Tree of Meshes
10
Penn ESE680-002 Spring 2007 -- DeHon 10 Can Fold Up
11
Penn ESE680-002 Spring 2007 -- DeHon 11 Gives Uniform Channels Works nicely p=0.5 Channels log(N) [Greenberg and Leiserson, Appl. Math Lett. v1n2p171, 1988]
12
Penn ESE680-002 Spring 2007 -- DeHon 12 Gives Uniform Channels (and add shortcuts)
13
Penn ESE680-002 Spring 2007 -- DeHon 13 How wide are channels?
14
Penn ESE680-002 Spring 2007 -- DeHon 14 How wide are channels?
15
Penn ESE680-002 Spring 2007 -- DeHon 15 How wide are channels? A constant factor wider than lower bound! P=2/3 ~8 P=3/4 ~5.5
16
Penn ESE680-002 Spring 2007 -- DeHon 16 Implications Tree never requires more than constant factor more wires than mesh –Even w/ the non-minimal length routes –Even w/out shortcuts Mesh global route upper bound channel width is O(N p-0.5 ) –Can always use fold- squash tree as the route –Matches lower bound!
17
Penn ESE680-002 Spring 2007 -- DeHon 17 MoT
18
Penn ESE680-002 Spring 2007 -- DeHon 18 Recall: Mesh Switches Switches per switchbox: –6w/L seg Switches into network: –(K+1) w Switches per PE: –6w/L seg + Fc (K+1) w –w = cN p-0.5 –Total N p-0.5 Total Switches: N*(Sw/PE) N p+0.5 > N
19
Penn ESE680-002 Spring 2007 -- DeHon 19 Recall: Mesh Switches Switches per PE: –6w/L seg + Fc (K+1) w –w = cN p-0.5 –Total N p-0.5 Not change for –Any constant Fc –Any constant L seg
20
Penn ESE680-002 Spring 2007 -- DeHon 20 Mesh of Trees Hierarchical Mesh Build Tree in each column [Leighton/FOCS 1981]
21
Penn ESE680-002 Spring 2007 -- DeHon 21 Mesh of Trees Hierarchical Mesh Build Tree in each column …and each row [Leighton/FOCS 1981]
22
Penn ESE680-002 Spring 2007 -- DeHon 22 Mesh of Trees More natural 2D structure Maybe match 2D structure better? –Don’t have to route out of way
23
Penn ESE680-002 Spring 2007 -- DeHon 23 MoT Parameterization: P P=0.5 P=0.75
24
Penn ESE680-002 Spring 2007 -- DeHon 24 MoT Parameterization Support C with additional trees –(like BFT) C=1 C=2
25
Penn ESE680-002 Spring 2007 -- DeHon 25 Mesh of Trees Logic Blocks –Only connect at leaves of tree Connect to the C trees –Per side –4C total
26
Penn ESE680-002 Spring 2007 -- DeHon 26 Switches Total Tree switches –2 C N×(switches/tree) –2={X,Y} –C per Row and Col.
27
Penn ESE680-002 Spring 2007 -- DeHon 27 Switches Total Tree switches –2 C N× (switches/tree) Sw/Tree:
28
Penn ESE680-002 Spring 2007 -- DeHon 28 Switches Total Tree switches –2 C N× (switches/tree) Sw/Tree:
29
Penn ESE680-002 Spring 2007 -- DeHon 29 Switches Only connect to leaves of tree C (K+1) switches per leaf Total switches Leaf + Tree O(N)
30
Penn ESE680-002 Spring 2007 -- DeHon 30 Wires Design: O(N p ) in top level Total wire width of channels: O(N p ) –Another geometric sum No detail route guarantee (at present) –Likely amenable to expander design (Day16)
31
Penn ESE680-002 Spring 2007 -- DeHon 31 Empirical Results Benchmark: Toronto 20 Compare to L seg =1, L seg =4 –CLMA ~ 8K LUTs Mesh(L seg =4): w=14 122 switches/LB MoT(p=0.67): C=4 89 switches/LB –Benchmark wide: 10% less CLMA largest Asymptotic advantage [Rubin,DeHon/FPGA2003]
32
Penn ESE680-002 Spring 2007 -- DeHon 32 Shortcuts Strict Tree –Same problem with physically far, logically close
33
Penn ESE680-002 Spring 2007 -- DeHon 33 Shortcuts Empirical –Shortcuts reduce C –But net increase in total switches
34
Penn ESE680-002 Spring 2007 -- DeHon 34 Staggering With multiple Trees –Offset relative to each other –Avoids worst-case discrete breaks –One reason don’t benefit from shortcuts
35
Penn ESE680-002 Spring 2007 -- DeHon 35 Flattening Can use arity other than two
36
Penn ESE680-002 Spring 2007 -- DeHon 36 [Rubin&DeHon/TRVLSI2004] Overall 26% fewer than mesh
37
Penn ESE680-002 Spring 2007 -- DeHon 37 [Rubin&DeHon/TRVLSI2004] Arity 5 42% fewer wires than arity 2
38
Penn ESE680-002 Spring 2007 -- DeHon 38 MoT Parameters Shortcuts Staggering Corner Turns – to come Arity
39
Penn ESE680-002 Spring 2007 -- DeHon 39 Day 6
40
Penn ESE680-002 Spring 2007 -- DeHon 40 Wire Layers = More Wiring Day 6
41
Penn ESE680-002 Spring 2007 -- DeHon 41 MoT Layout Main issue is layout 1D trees in multilayer metal
42
Penn ESE680-002 Spring 2007 -- DeHon 42 Row/Column Layout Geometric Progression does not saturate via space!
43
Penn ESE680-002 Spring 2007 -- DeHon 43 Row/Column Layout
44
Penn ESE680-002 Spring 2007 -- DeHon 44 Composite Logic Block Tile
45
Penn ESE680-002 Spring 2007 -- DeHon 45 P=0.75 Row/Column Layout
46
Penn ESE680-002 Spring 2007 -- DeHon 46 P=0.75 Row/Column Layout
47
Penn ESE680-002 Spring 2007 -- DeHon 47 MoT Layout Easily laid out in Multiple metal layers –Minimal O(N p-0.5 ) layers Contain constant switching area per LB –Even with p>0.5
48
Penn ESE680-002 Spring 2007 -- DeHon 48 Relation?
49
Penn ESE680-002 Spring 2007 -- DeHon 49 How Related? What lessons translate amongst networks? Once understand design space –Get closer together Ideally –One big network design we can parameterize
50
Penn ESE680-002 Spring 2007 -- DeHon 50 MoT HSRA (P=0.5)
51
Penn ESE680-002 Spring 2007 -- DeHon 51 MoT HSRA (p=0.75)
52
Penn ESE680-002 Spring 2007 -- DeHon 52 MoT HSRA A C MoT maps directly onto a 2C HSRA –Same p’s HSRA can route anything MoT can
53
Penn ESE680-002 Spring 2007 -- DeHon 53 HSRA MoT Decompose and look at rows Add homogeneous, upper-level corner turns
54
Penn ESE680-002 Spring 2007 -- DeHon 54 HSRA MoT
55
Penn ESE680-002 Spring 2007 -- DeHon 55 HSRA MoT
56
Penn ESE680-002 Spring 2007 -- DeHon 56 HSRA MoT
57
Penn ESE680-002 Spring 2007 -- DeHon 57 HSRA MoT HSRA + HSRA T = MoT w/ H-UL-CT –Same C, P –H-UL-CT: Homogeneous, Upper-Level, Corner Turns
58
Penn ESE680-002 Spring 2007 -- DeHon 58 HSRA MoT (p=0.75)
59
Penn ESE680-002 Spring 2007 -- DeHon 59 HSRA MoT (p=0.75) Can organize HSRA as MoT P>0.5 MoT layout –Tells us how to layout p>0.5 HSRA
60
Penn ESE680-002 Spring 2007 -- DeHon 60
61
Penn ESE680-002 Spring 2007 -- DeHon 61 MoT vs. Mesh MoT has Geometric Segment Lengths Mesh has flat connections MoT must climb tree –Parameterize w/ flattening MoT has O(N p-0.5 ) fewer switches
62
Penn ESE680-002 Spring 2007 -- DeHon 62 MoT vs. Mesh Wires –Asymptotically the same (p>0.5) –Cases where Mesh requires constant less –Cases where require same number
63
Penn ESE680-002 Spring 2007 -- DeHon 63 [DeHon/TRVLSI2004]
64
Penn ESE680-002 Spring 2007 -- DeHon 64 Admin Interconnect assignment due today Retiming assignment out today –Monday lecture is key –Reading handed out last time for Monday
65
Penn ESE680-002 Spring 2007 -- DeHon 65 Big Ideas Networks driven by same wiring requirements –Have similar wiring asymptotes Can bound –Network differences –Worst-case mesh global routing Hierarchy structure allows to save switches –O(N) vs. (N p+0.5 )
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.