Download presentation
Presentation is loading. Please wait.
Published byImogen Parrish Modified over 9 years ago
1
Molecular Structure & Intermolecular Forces Saturday Study Session #2 3 rd Class
2
Lewis Structures Lewis structures are representations of molecules showing all electrons, bonding and nonbonding.
3
Draw the Lewis structure for CH 2 Cl 2 OR
4
Draw the Lewis Structure for NO +
5
Draw the Lewis Structure for XeF2 *Xe can have more than an octet of electrons!
6
From the Lewis Structure we can determine: Electron geometry Molecular geometry Hybrid Orbital Polarity Intermolecular bond
7
Molecular Shapes The shape of a molecule plays an important role in its reactivity. By noting the number of bonding and nonbonding electron pairs, we can easily predict the shape of the molecule.
8
Electron Domains We can refer to the electron pairs as electron domains. In a double or triple bond, all electrons shared between those two atoms are on the same side of the central atom; therefore, they count as one electron domain. The central atom in this molecule, A, has four electron domains.
9
Valence-Shell Electron-Pair Repulsion Theory (VSEPR) “The best arrangement of a given number of electron domains is the one that minimizes the repulsions among them.”
10
If all electron domains are bonds the molecular shapes are like these below:
11
If some of the electron domains are unshared pairs of electrons then the molecular shapes are as indicated in this chart and the one on the following slide.
12
Let’s practice molecular geometry
13
Molecular Geometry answers 1.CH 2 Cl 2 2.NO + 3.XeF 2 1.Tetrahedral 2.Linear 3.Linear, but its electron geometry is octahedral due to 3 unshared pairs of e-
14
Bond Angles 45 o 120 o
15
Bond Angles for molecules without lone pairs of electrons.
16
Nonbonding Pairs and Bond Angle Nonbonding pairs are physically larger than bonding pairs. Therefore, their repulsions are greater; this tends to decrease bond angles in a molecule.
17
Multiple Bonds and Bond Angles Double and triple bonds place greater electron density on one side of the central atom than do single bonds. Therefore, they also affect bond angles.
18
Bond and Molecular POLARITY
19
Polar Covalent Bonds Intramolecular Though atoms often form compounds by sharing electrons, the electrons are not always shared equally. Fluorine pulls harder on the electrons it shares with hydrogen than hydrogen does. Therefore, the fluorine end of the molecule has more electron density than the hydrogen end.
20
Polar Covalent Bonds The greater the difference in electronegativity, the more polar is the bond. \
21
Polarity Just because a molecule possesses polar bonds does not mean the molecule as a whole will be polar.
22
Polarity of Molecules By adding the individual bond dipoles, one can determine the overall dipole moment for the molecule.
23
Polarity
24
Molecular Polarity Polar Molecules Must have some polar bonds (∆EN > 1.7) Overall net dipole Soluble in Water Look for – Asymmetry – -OH, -NH 2 groups Non-Polar Molecules Polar or nonpolar bonds Dipoles cancel Insoluble in Water Look for – Symmetrical molecule
25
Practice Molecular Polarity Which molecule is more polar? 1. CS 2 or SF 2 2. BH 3 or NH 3 NONPOLAR POLAR NONPOLAR POLAR
26
Which is more polar? 3. Benzene OR Glucose NONPOLAR POLAR
27
Molecules Stick Together All molecules have some attractive forces for each other. Polar molecules have more types of attractive forces than do nonpolar molecules. These attractive forces are called INTERMOLECULAR FORCES (IMF)
28
Inter vs. Intra molecular forces Inter (between molecules) London dispersion forces Dipole-dipole forces Hydrogen bonds Intra (inside molecules) Ionic bonds Covalent bonds Metallic bonds
29
Dipole-Dipole forces
30
Hydrogen bonding
31
Which IMFs are present? 1. CF 4 2. BF 3 3. NH 3 4. H 2 CS 1.London dispersion forces 2. London dispersion forces, Dipole – dipole forces 3. London dispersion forces, Hydrogen bonding 4. London dispersion forces, Dipole – dipole forces (in water, weak H bonding)
32
Effects of IMFs States of matter Phase changes – Melting points – Boiling points – Vapor pressure
33
States of Matter Molecular Interactions ARE Intermolecular Forces (Increasing)
34
Particles getting farther apart means they are overcoming intermolecular forces by adding energy.
35
Energy InEnergy Out Must overcome IMFs IMFs cause particles to congregate
36
Effects of IMFs on properties Greater IMFs = higher melting and boiling points and lower vapor pressure. Greater Molar Mass = more electrons = greater IMFs Volatile substances have high VP due to low IMFs Greater IMFs = high ΔH vap
37
MC Question 1 In which of the following processes are covalent bonds broken? A) I 2(s) → I 2(g) B) CO 2(s) → CO 2(g) C) NaCl (s) → NaCl (l) D) C (diamond) → C (g) E) Fe (s) → Fe (l)
38
Question 1 Answer Correct answer is D Diamond is a covalently bonded network crystal. In order to form a gas the covalent bonds must be broken. A and B the molecules remain intact, only IMF are “broken” C is held together with ionic bonds E is held together with metallic bonds
39
MC Question 2 The structural isomers C 2 H 5 OH and CH 3 OCH 3 would be expected to have the same values for which of the following? (Assume ideal behavior.) A) Gaseous densities at the same temperature and pressure B) Vapor pressures at the same temperature C) Boiling points D) Melting points E) Heats of vaporization
40
Question 2 Answer Correct answer is A Density is a function of mass and volume. Isomers have the same molecular mass, same volume can be assumed. All other answers the values change according to differences in IMFs. C 2 H 5 OH has hydrogen bonding but CH 3 OCH 3 does not.
41
MC Question 3 X: CH3–CH2–CH2–CH2–CH3 Y: CH3–CH2–CH2–CH2–OH Z: HO–CH2–CH2–CH2–OH Based on concepts of polarity and hydrogen bonding, which of the following sequences correctly lists the compounds above in the order of their increasing solubility in water? A) Z < Y < X B) Y < Z < X C) Y < X < Z D) X < Z < Y E) X < Y < Z
42
Question 3 Answer Correct answer is E The pure hydrocarbon butane X, is the least polar, thus has the lowest solubility in water. The presence of an –OH group on butanol Y, makes it more soluble than butane, but less soluble than the 1,3-propanediol Z, that contains two –OH groups. Aren’t you glad you don’t have to name all of them?
43
MC Question 4 Hydrogen Halide Normal Boiling Points, °C HF +19 HCl – 85 HBr – 67 HI – 35 The relatively high boiling point of HF can be correctly explained by which of the following? A) HF gas is more ideal. B) HF is the strongest acid. C) HF molecules have a smaller dipole moment. D) HF is much less soluble in water. E) HF molecules tend to form hydrogen bonds.
44
Question 4 Answer Correct answer is E Hydrogen bonding occurs when a H is bound to a “highly electronegative atom” (F, N or O) The bonded H is attracted to an unshared electron pair or another highly electronegative atom on a neighboring molecule.
45
MC Question 5 Which of the following gases deviates most from ideal behavior? (Ideal gases assume no interparticle attractions) A) SO 2 B) Ne C) CH 4 D) N 2 E) H 2
46
Question 5 Answer Correct answer is A Deviations occur due to molecular volume (larger molecules have more mass as well) and attractive forces. The more electrons present, the more polarizable a molecule, thus the greater the London dispersion (induced dipole-induced dipole) attractive forces become. SO 2 has a higher molecular mass, more electrons and is more polarizable than the other answer choices.
47
MC Question 6 Molecular iodine would be most soluble in: A) water B) carbon tetrachloride C) vinegar (acetic acid and water) D) vodka (ethanol and water) E) equally soluble in all four
48
Question 6 Answer Correct answer is B Molecular iodine is a nonpolar molecule. Carbon tetrachloride is the only nonpolar solvent listed.
49
FR Question 1 Explain each of the following in terms of the electronic structure and/or bonding of the compounds involved. (a)At ordinary conditions, HF (normal boiling point = 20°C) is a liquid, whereas HCl (normal b.p. = -114°C) is a gas.
50
FRQ 1 Answer HF exhibits hydrogen bonding but HCl does not. Both molecules have dispersion forces (HCl slightly greater than HF) but the hydrogen bonds are stronger in HF (F very highly electronegative) and require more energy to overcome to allow HF molecules to leave the liquid state and enter the gaseous state.
51
FR Question 2 (a) Identify the type(s) of intermolecular attractive forces in: (i) pure glucose (ii) pure cyclohexane
52
(b) Glucose is soluble in water but cyclohexane is not soluble in water. Explain.
53
FRQ 2 answer ALL molecules have London dispersion forces. Glucose has hydrogen bonding because its hydrogens are bonded to oxygen but cyclohexane does not. Cyclohexane’s hydrogens are bonded only to carbon. Glucose can also form hydrogen bonds with water increasing its solubility, while hexane can not hydrogen bond with water.
54
FR Question 3 Consider the two processes represented below. Process 1: H 2 O (l) → H 2 O (g) ∆H° = +44.0 kJ mol Process 2: H 2 O (l) → H 2(g) + 1/2 O 2(g) ∆H° = +286 kJ mol (i) For each of the two processes, identify the type(s) of intermolecular or intramolecular attractive forces that must be overcome for the process to occur.
55
FRQ 3 Answer Process 1 requires overcoming London dispersion forces and hydrogen bonding. Process 2 requires overcoming much stronger covalent bonds.
56
(ii) Indicate whether you agree or disagree with the statement in the box below. Support your answer with a short explanation. When water boils, H 2 O molecules break apart to form hydrogen molecules and oxygen molecules Water Boiling: H 2 O (l) → H 2 O (g) molecules remain intact Water molecules breaking apart: H 2 O (l) → H 2(g) + 1/2 O 2(g) This process requires electrolysis
57
FR Question 4 Explain each of the following in terms of atomic and molecular structures and/or intermolecular forces. (a)Solid K conducts an electric current, whereas solid KNO 3 does not. (b)The normal boiling point of CCl 4 is 77°C, whereas that of CBr 4 is 190°C. (c)Iodine has a greater boiling point than bromine even though the bond energy in bromine is greater than the bond energy in iodine
58
FRQ 4 Answer (a)Solid K has metallic bonds with a mobile sea of electrons allowing current to flow. The electrons in KNO 3 are localized in ionic and covalent bonds and are not allowed to move throughout the material. (b)CCl 4 has a lower boiling point than CBr 4 because CBr 4 has more electrons and greater London dispersion forces.
59
(c) Bond energies measure the strength of the covalent bonds in the diatomic molecules I 2 and Br 2. The boiling points depend upon intermolecular forces. Both molecules have only London dispersion forces. Iodine has more electrons per molecule than bromine causing the higher boiling point for iodine.
60
FR Question 5 Use appropriate chemical principles to account for each of the following observations. In each part, your response must include specific information about both substances. (a)At 25°C and 1 atm, F 2 is a gas, whereas I 2 is a solid. (b)The melting point of NaF is 993°C, whereas the melting point of CsCl is 645°C. (c)Ammonia, NH 3, is very soluble in water, whereas phosphine, PH 3, is only moderately soluble in water.
61
FRQ 5 Answer (a) F 2 molecules are smaller and have fewer electrons than I 2 molecules. The only intermolecular forces present in both molecules are London dispersion forces. Fluorine has fewer IMF allowing the molecules to overcome the attractive forces at 25 o C and move apart into the gas phase, while iodine molecules with more electrons have greater London forces keeping the molecules very close together as a solid.
62
(b) Coulomb’s Law states that the magnitude of the attractive forces between two charged particles is equal to the product of the charges of the particles divided by the square of the distance between the particles. NaF and CsCl are both ionic compounds. In order to melt their ionic bonds must be broken. The bonds in NaF are stronger than the bonds in CsCl because Na and F are smaller atoms than Cs and Cl respectively. This means that their nuclei are closer the other atoms’ electron cloud, increasing the strength of the attractive forces between atoms. Also the charges of Na and Cs are the same as are the charges of F and Cl. Using Coulomb’s Law in both cases would result in the same number in the numerator of his equation but with a smaller value in the denominator for NaF than for CsCl resulting in stronger forces for NaF and thus a higher melting point.
63
(c) Ammonia can form hydrogen bonds with water but phosphine can not. The ability to form hydrogen bonds along with the polarity that both molecules exhibit increases the solubility of ammonia in water as compared to that of phosphine.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.