Download presentation
1
Geometry Trigonometric Ratios CONFIDENTIAL
2
Find the geometric mean of each pair of a number.
Warm Up Find the geometric mean of each pair of a number. 1) 3 and ) 6 and ) 8 and 32 CONFIDENTIAL
3
Trigonometric Ratios By the AA Similarity Postulate, a right triangle with a given acute angle is similar to every other right triangle with that same acute angle measure. So ∆ABC~∆DEF~∆XYZ, and BC/AC = EF/DF = YZ/XZ. These are trigonometric radios. A trigonometric ratio is a ratio of two sides of a right triangle. 32˚ 32˚ 32˚ CONFIDENTIAL
4
Trigonometric Ratios DEFINITION SYMBOLS DIAGRAM
The sine of an angle is the ratio of the length of the leg opposite the angle to the length of the hypotenuse. B c a A The cosine of an angle is the ratio of the length of the leg adjacent to the angle to the length of the hypotenuse. C b CONFIDENTIAL Next page
5
DEFINITION SYMBOLS DIAGRAM
The tangent of an angle is the ratio of the length of the leg opposite the angle to the length of the leg adjacent to the angle. B c a A C b CONFIDENTIAL
6
Trigonometric Ratios Write each trigonometric ratio as a fraction and as a decimal rounded to the nearest hundredth. R S T 13 12 5 sin R sin R = 12/ cos R cos R = 5/ tan R tan R = 5/ ~ ~ ~ ~ ~ ~ CONFIDENTIAL
7
Now you try! 1) Write each trigonometric ratio as a fraction and as a decimal rounded to the nearest hundredth. a. cos A b. tan B c. sin B CONFIDENTIAL
8
Trigonometric Ratios in special Right Triangles
Use a special right to write sin 60˚ as a fraction. Draw and label a 30˚ -60˚ -90˚∆. CONFIDENTIAL
9
2) Use a special right triangle to write tan 45˚ as a fraction.
Now you try! 2) Use a special right triangle to write tan 45˚ as a fraction. CONFIDENTIAL
10
Calculating Trigonometric Ratios
Use your calculator to find each trigonometric ratio. Round the nearest hundredth. A ) cos 76˚ B) sin 8˚ C) tan 82˚ cos76˚= 0.24 sin 8˚= 0.14 tan 82˚=7.12 CONFIDENTIAL
11
Now you try! 3) Use your calculator to find each trigonometric ratio.
Round to the nearest hundredth. a. tan 11˚ b. sin 62˚ c. cos 30˚ CONFIDENTIAL
12
The hypotenuse is always the longest side of a right triangle
The hypotenuse is always the longest side of a right triangle. So the denominator of a sine or cosine ratio is always greater than the numerator. Therefore the sine and cosine of an acute angle are always positive numbers less than 1. Since the tangent of an acute angle is the ratio of the lengths of the legs, it can have any value greater than 0. CONFIDENTIAL
13
Trigonometric Ratios to Find Lengths
Find each length. Round to the nearest hundredth. A) AB AB is adjacent to the given angle, /A. You are given BC, which is opposite /A. Since the adjacent and opposite legs are involved, use a tangent ratio. Write a trigonometric ratio. Substitute the given values. Multiply both sides by AB and divide by tan 41˚. Simplify the expression. Next page CONFIDENTIAL
14
Write a trigonometric radio.
B) MP MP is opposite the given angle, /N. You are given NP, which is the hypotenuse. Since the opposite side and hypotenuse are involved, use a sine radio. Write a trigonometric radio. Substitute the given values. Multiply both sides by 8.7 Simplify the expression. Next page CONFIDENTIAL
15
Write a trigonometric ratio.
C) YZ YZ is the hypotenuse. You are given XZ, which is adjacent to the given angle, /Z. Since the adjacent side and hypotenuse are involved, use a cosine ratio. Write a trigonometric ratio. Substitute the given values. Multiply both sides by YZ and divide by cos 38˚. Simplify the expression. CONFIDENTIAL
16
4) Find each length. Round to the nearest hundredth
NOW YOU TRY! 4) Find each length. Round to the nearest hundredth CONFIDENTIAL
17
Problem Solving Application
A contractor is building a wheelchair ramp for a doorway that is 1.2 ft above the ground. To meet ADA guidelines, the ramp will make an angle of 4.8˚ with the ground. To the nearest hundredth of a foot, what is the horizontal distance covered by the ramp? Make a sketch. The answer is BC. Write a trigonometric ratio. Substitute the given values. Multiply both sides by BC and divide by cos 4.8˚. Simplify the expression. CONFIDENTIAL
18
NOW YOU TRY! 5) Find AC, the length of the ramp in Example 5. to the nearest hundredth of a foot CONFIDENTIAL
19
Now some practice problems for you!
CONFIDENTIAL
20
Assessment Write each trigonometric ratio as a fraction and as a decimal rounded to the nearest hundredth. 1)sin C ) tan A ) cos A CONFIDENTIAL
21
Use a special right triangle to write each trigonometric ratio as a fraction.
4) cos 60˚ ) tan 30˚ ) sin 45˚ CONFIDENTIAL
22
Use your calculator to find each trigonometric ratio
Use your calculator to find each trigonometric ratio. Round to the nearest hundredth. 7) tan 67˚ ) sin 23˚ CONFIDENTIAL
23
Find each length. Round to the nearest hundredth.
AB CONFIDENTIAL
24
Let’s review Trigonometric Ratios
By the AA Similarity Postulate, a right triangle with a given acute angle is similar to every other right triangle with that same acute angle measure. So ∆ABC~∆DEF~∆CYZ, and BC/AC = EF/DF = YZ/XZ. These are trigonometric radios. A trigonometric ratio is a ratio of two sides of a right triangle. 32˚ 32˚ 32˚ CONFIDENTIAL
25
Trigonometric Ratios DEFINITION SYMBOLS DIAGRAM
The sine of an angle is the ratio of the length of the leg opposite the angle to the length of the hypotenuse. B c a A The cosine of an angle is the ratio of the length of the leg adjacent to the angle to the length of the hypotenuse. C b CONFIDENTIAL Next page
26
DEFINITION SYMBOLS DIAGRAM
The tangent of an angle is the ratio of the length of the leg opposite the angle to the length of the leg adjacent to the angle. B c a A C b CONFIDENTIAL
27
Calculating Trigonometric Ratios
Use your calculator to find each trigonometric ratio. Round the nearest hundredth. A cos 76˚ B sin 8˚ C tan 82˚ CONFIDENTIAL
28
The hypotenuse is always the longest side of a right triangle
The hypotenuse is always the longest side of a right triangle. So the denominator of a sine or cosine ratio is always greater than the numerator. Therefore the sine and cosine of an acute angle are always positive numbers less than 1. Since the tangent of an acute angle is the ratio of the lengths of the legs, it can have any value greater than 0. CONFIDENTIAL
29
Trigonometric Ratios to Find Lengths
Find each length. Round to the nearest hundredth. A. AB AB is adjacent to the given angle, /A. You are given BC, which is opposite /A. Since the adjacent and opposite legs are involved, use a tangent ratio. Write a trigonometric ratio. Substitute the given values. Multiply both sides by AB and divide by tan 41˚. Simplify the expression. CONFIDENTIAL
30
Problem Solving Application
A contractor is building a wheelchair ramp for a doorway that is 1.2 ft above the ground. To meet ADA guidelines, the ramp will make an angle of 4.8˚ with the ground. To the nearest hundredth of a foot, what is the horizontal distance covered by the ramp? Make a sketch. The answer is BC. Write a trigonometric ratio. Substitute the given values. Multiply both sides by BC and divide by cos 4.8˚. Simplify the expression. CONFIDENTIAL
31
Trigonometric Ratios in special Right Triangles
Use a special right to write sin 60˚ as a fraction. Draw and label a 30˚ -60˚ -90˚∆. CONFIDENTIAL
32
You did a great job today!
CONFIDENTIAL
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.