Presentation is loading. Please wait.

Presentation is loading. Please wait.

Double beta decay : physics case

Similar presentations


Presentation on theme: "Double beta decay : physics case"— Presentation transcript:

0 Double beta decay experiments
F. Piquemal Modane Underground Laboratory (CNRS/NI2P3 and CEA/Irfu) Many thanks to : K. Zuber, S. Schoenert, K. Inoue, A. Giuliani, S. Elliot, M. Chen, M. Nomachi, N. Ishihara. H.J. Kim, F. Danevich, L. Winslow TPC Paris Decembre,

1 Double beta decay : physics case
Nature of neutrino Dirac or Majorana Neutrino mass hierarchy Right-handed current interaction CP violation in leptonic sector Search of Supersymetry and new particles

2 Double beta decay observables
(A,Z) (A,Z+2) + 2 e- Mass vs Right-Handed Current mechanism Angular distribution MM RHC Ee1 – Ee2 distribution sum electron energy / Q Decay to Excited States (A,Z)  (A, Z+2) + 2 e- + 1,2 g 1 or 2 additonnal g-rays Identification of daugther nucleus : Xe  Ba e- F. Piquemal TPC 2014 (APC Paris)

3 Isotope choice F. Piquemal TPC 2014 (APC Paris)
Dueck et al. Phys,. Rev. D (2011) F. Piquemal TPC 2014 (APC Paris)

4 Isotope enrichment Nucleus Existing method R&D 48Ca
R&D in KAERI (Korea) for 48Ca enrichment by laser Nucleus Existing method R&D 48Ca Laser separation, gazeous diffusion 76Ge Centrifugation 82Se 96Zr Laser separation 100Mo 116Cd 130Te 136Xe 150Nd Centrifugation, Laser R&D in Russia for 150Nd enrichment by centrifugation R&D in France for 150Nd enrichment by laser F. Piquemal TPC 2014 (APC Paris)

5 Backgrounds Background origins  M . t WITH Background NBckg . DE (y)
e :efficiency, M: Mass, t: time, Nbckg: Background events, DE: energie resolution, A: isotope mass Background origins Natural radioactivity Other sources of background: Muons (underground labs) g from ( (n,g) reactions , m bremstrahlung Muon spallation products a emitters from bulk or surface contaminations for calorimeters bb(2n) if modest energy resolution 208Tl (2.6 MeV g ) 214Bi (and radon) 208Tl (and thoron) E (MeV) 40K, 60Co,… Transistion energy Qbb Different strategies are possible to minimize the background F. Piquemal TPC 2014 (APC Paris)

6 Next generation of experiments
Calorimeter Tracker Ge diode 76Ge e, DE GERDA MAJORANA Tracko-calo 82Se (150Nd,48Ca) NBckg , isotopes SuperNEMO CUORE LUCIFER Lumineu Amore Bolometers 130Te,82Se,100Mo e, DE Pixellized CdZnTe 116Cd e, NBckd COBRA Liquid Xe 136Xe e,M,(Nbckd) EXO MTD EXO-gas NEXT TPC 136Xe, 150Nd e, NBckd KamLAND-Zen CANDLES SNO+ Borexino CdWO4 AMoRE Scintillator 136Xe, ,48Ca, 150Nd, 100Mo e, M F. Piquemal TPC 2014 (APC Paris)

7 Required background level
Goal of the next generation In case of bb(0n) through light neutrino exchange Isotope mass Required background level in the ROI ~ 10 kg 100 – 1000 cts/yr/ton (200 – 400kg 136Xe) ~ 100 kg 1 – 10 cts/yr/ton ~ 1000 kg 0.1 – 1 cts/yr/ton |mee| S T Petcov 2009 J. Phys.: Conf. Ser 10 kg: T1/2 > years kg: T1/2 > years : Next generation will use ≥ 100 kg (started with Xe experiments) Improvements of background level needed F. Piquemal TPC 2014 (APC Paris)

8 SuperNEMO Construction NEXT R&D EXO R&D MTD (DCBA) R&D COBRA R&D
Tracking experiments SuperNEMO Construction NEXT R&D EXO R&D MTD (DCBA) R&D COBRA R&D F. Piquemal TPC 2014 (APC Paris)

9 NEMO3 Unique feature e- e-
Tracking detector: drift chambers (6180 Geiger cells) t = 5 mm, z = 1 cm ( vertex ) Calorimeter (1940 plastic scintillators and PMTs) Energy Resolution FWHM=8 % (3 MeV) Identification e-,e+, Very high efficiency for background rejection Background Qbb [2.8 – 3.2 MeV] : cts/keV/kg/y Multi-isotope (7 measured at the same time) Running at Modane underground laboratory ( ) Unique feature Measurement of all kinematic parameters: individual energies and angular distribution E1 e- event e- E1+E2= 2088 keV t= 0.22 ns (vertex) = 2.1 mm E2 [2.8 – 3.2] MeV 18 observed events, ± 1.3 expected 100Mo T1/2 (bb0n) > y (90% C.L.) <mn> < 0.31– 0.79 eV Measurement of 7 isotopes bb(2n) half-lifes Excited states, Majoron limits for bb(0n)

10 SuperNEMO 20 modules A module Located in LSM extension
Demonstrator module 20 Modules Source : 82Se 7 kg 100 kg Drift chambers for tracking 2 0000 40 000 Electron calorimeter 500 10 000 g veto (up and down) 100 2 000 T1/2 sensitivity y (No background) y <m> sensitivity 200 – 400 meV 40 – 100 meV F. Piquemal TPC 2014 (APC Paris)

11 SuperNEMO Objective: to reach the background level for 100 kg
to perform a no background experiment with 7 kg isotope of 82Se in 2 yr Source 214Bi < 10 mBq/kg (NEMO3 100 mBq/kg) 208Tl < 2 mBq/kg (NEMO3 100 mBq/k) Calorimeter DE/E < 3 MeV (NEMO3 8.6% at 3MeV) Tracker 3.7 m long (NEMO3 2.7 m) t = 5 mm, z = 1 cm Radon < 0.15 mBq/m3 (NEMO3 5 mBq/m3) Wiring robot Global efficiency : 30 % (NEMO3 8%)

12 SuperNEMO Demonstrator status
Scintillators production and 8’’ Hamamatsu PMT’s in production FE digitizer boards OK, control and trigger boards under development Blocks, wall design and technical tests OK  construction in progress 1st LSM in 2014 Calorimeter - Automated drift cells production ongoing with the wiring robot - First 1 / 4 tracker C0 tested for radon emanation and cells propulation - C0 commissioning at see-level and in 2014 Tracker - 5.5 kg of 82Se , 4.5 kg already purified. Purchase of 1.5 kg in progress - Source materials (glue, films,…) under HPGE and BiPO selection processes - Calibration sources deployment system and LED survey system under test Source F. Piquemal TPC 2014 (APC Paris)

13 SuperNEMO demonstrator module
Calorimeter Source Ultra low background detector Modular detector with 3 main components : Central source foil frame : 7 kg of isotope Tracking : drift chambers Calorimeter : 712 scintillators+ PMTs Shielded by iron (300 tons) and water Construction in progress Installation and commissioning at Modane Underground Laboratory 2015 – 2016 Data taking 2016 tracker No background expected for 2 years of data. 7 kg 82Se T1/2 > y <mn> < 0.16 – 0.44 eV

14 COBRA Cobra Use large amount of CdZnTe Semiconductor Detectors
Source = detector • Focus on 116Cd Semiconductor (Good energy resolution, clean) Room temperature Modular design (Coincidences) Tracking/Pixelisation („Solid state TPC“) K. Zuber, Phys. Lett. B 519,1 (2001) F. Piquemal TPC 2014 (APC Paris)

15 COBRA Cobra Objective : Massive background reduction by particle identification Bi-214 = Time coincidence of both 55 μm pixel real event alpha electron alpha electron Real event! Current spectrum (black), kg*days Background at 2813 keV about 1 ct/keV/kg/yr Currently ongoing upgrade: 64 detectors (in hand) 32 running at LNGS Pulse shape information rejection of surface events 116Cd peak region F. Piquemal TPC 2014 (APC Paris)

16 MTD (Magnetic Tracking Detector: temporary name) following of DCBA
Magnetic Tracking Detector (DCBA) MTD (Magnetic Tracking Detector: temporary name) following of DCBA Chamber cell : the same as DCBA-T3, Source plate: 80 m2/module Thickness: 40 mg/cm2, Source weight: 32 kg/module Expected Energy Resolution 3.4% at Qbb for 150Nd Multi-isotope 150Nd, 100Mo, 82Se Several modules to reach <mn> 50 meV F. Piquemal TPC 2014 (APC Paris)

17 Calorimetric experiments
GERDA II In progress CUORE In progress KamLAND-Zen In progress CANDLES Data taking SNO In preparation MAJORANA Completion of R&D LUCIFER R&D ZnMoO R&D Amore R&D CdWO R&D F. Piquemal TPC 2014 (APC Paris)

18 Ge diodes L. Winslow Neutrino 2014 F. Piquemal TPC 2014 (APC Paris)

19 GERDA II : Ge diodes Ge detectors in liquid nitrogen installed @ LNGS
Phase I: kg of enriched detectors Background level after Pulse shape discrimination 0.01 cts/(keV.kg.yr). Exposure 21.6 kg.yr GERDA: T1/2 > yr (90%CL) GERDA+ IGEX. HM T1/2 > yr <mn> < 0.2 – 0.4 eV

20 GERDA II : Ge diodes Integration of the elements of GERDA phase II
40 kg of enriched Ge detectors - First deployment of the liquid argon scintillation readout. - First pilot string will be deployed together with the LAr scintillation read out. - Deployment of the full array of enriched Ge detectors early next year. Phase II is designed to reach T1/2 > 1026 years. F. Piquemal TPC 2014 (APC Paris)

21 Majorana : Ge diodes Improvement of the radiopurity of the materials, Pulse shape Cryostat 1 (3 strings enrGe & 4 strings natGe) (Fall 2013) Cryostat 2 (up to 7 strings enrGe) (Fall 2014) Final design of demonstrator 30 kg of 76Ge and 10 kg of natGe Differs from Steve’s version F. Piquemal TPC 2014 (APC Paris)

22 KamLAND-ZEN (Kamioka)
Purification of liquid scintillator to remove 110mAg Improvement of spallation cut Improvement of fiducial volume selection F. Piquemal TPC 2014 (APC Paris)

23 KamLAND-ZEN prospectives
F. Piquemal TPC 2014 (APC Paris)

24 CUORE: bolometers 741 kg of TeO2 bolometers (206 kg of 130Te) @ LNGS
CUORE-0 has validated the energy resolution And background results are encouraging All the towers are assembled Cryostat cooled down to 6 mK with 470 kg of Cu Presently, cooling with 8 bolometers for test F. Piquemal TPC 2014 (APC Paris)

25 CANDLES III 96 CaF2: 305kg (57 g of 48Ca) + liquid scintillator
Measurement started in June 2011. CANDLES III @ Kamioka Cooling system(~0℃) (october 2014) Coils to compensate magnetic filed Improvement of energy resolution 4% Qbb Enrichment of 48Ca (2%) F. Piquemal TPC 2014 (APC Paris)

26 SNO+ NatTe dissolved in liquid scintillator (0.3% corresponding to 800 kg of 130Te 5 years of data F. Piquemal TPC 2014 (APC Paris)

27 Scintillating bolometers
Example of b/a rejection with a 5 g detector Light/Heat [keV/keV] Shape parameter Heat energy [keV] Heat energy [keV] F. Piquemal TPC 2014 (APC Paris)

28 Bolometric Light Detector
LUCIFER Scintillating bolometers to recognize the -induced background thanks to the readout of the scintillation light Zn82Se crystal (Ø=45mm, h= 55 mm) W=483 g Reflecting Foil PTFE supports Bolometric Light Detector Ge crystal Array of 36÷44 enriched (95%) Zn82Se crystals. Expected background in the ROI (2995 keV) is  3 c/keV/kg/y Energy resolution 10 keV FWHM F. Piquemal TPC 2014 (APC Paris)

29 Calibration aboveground spectrum
LUMINEU Calibration aboveground spectrum Two enriched crystals of 60 g each obtained Excellent performance aboveground (CSNSM, Orsay) No difference with respect to natural crystals nderground tests of a few large mass enriched crystals (foreseen within June 2015) If radiopurity is confirmed: Start-up of LUCINEU project (LUCIFER+LUMINEU) Systematic production of  40 crystals containing  7 kg of 100Mo (MoU INFN+IN2P3+ITEP) Cool down of this 40 crystal array during 2016 in LNGS and/or LSM (depending on cryostat availability)

30 Background (yr/keV/kg)
AMORE (Advanced Mo-based Rare process Experiment) 40Ca100MoO4 bolometers 15 keV FWHM, Eff = 0.8 AMoRE Pilot, 2015 5 bolometers de CaMoO  1,5 kg  Stage Start (run, yr) Background (yr/keV/kg) Sensitivity limT1/2 (yr) m (eV) AMoRE pilot Jan (1) 0.01 ~1.5x1024 <0.3 – 0.9 AMoRE 10 Sep (3) 0.002 ~2x1025 AMoRE 200 Jan (5) 0.0002 ~41026 F. Piquemal TPC 2014 (APC Paris)

31 Studied isotopes Nat(48)Ca 116Cd 76Ge Nat(150)Nd 82Se 136Xe 48Ca 100Mo
GERDA MAJORANA KamLAND-Zen EXO - NEXO NEXT Lumineu AMoRE SuperNEMO LUCIFER COBRA CdWO4 CUORE SNO+ Borexino CANDLES Nat(48)Ca 116Cd 76Ge Nat(150)Nd 82Se 48Ca 150Nd CANDLES SuperNEMO AMoRE SNO+ MTD Borexino A dream ? 136Xe 100Mo 130Te F. Piquemal TPC 2014 (APC Paris)

32 Half-life to reach for <mn> = 50 meV
Experimental limit (90%CL) GERDA EXO-200 KamLAND-Zen CUORE NEMO3 NEMO3 Solotvina CANDLES NEMO3

33 Summary Present experiments at the level of T1/2 > 1024 – 1025 years <mn> < 0.15 – 0.5 eV Several experiments at 100 kg are needed to understand backgrounds and determine the best isotope and technique for higher mass Sensitivity : T1/2 > 1026 – 1027 years <mn> < 0.05 – 0.1 eV Starting to test of the inverted hierarchy scenario : starting of GERDA II, Majorana, SuperNEMO, SNO+, CUORE, scintilating bolometers Still a long way to reduce the background. In case of signal a tracking experiment will be needed to confirm it


Download ppt "Double beta decay : physics case"

Similar presentations


Ads by Google