Download presentation
0
Double beta decay experiments
F. Piquemal Modane Underground Laboratory (CNRS/NI2P3 and CEA/Irfu) Many thanks to : K. Zuber, S. Schoenert, K. Inoue, A. Giuliani, S. Elliot, M. Chen, M. Nomachi, N. Ishihara. H.J. Kim, F. Danevich, L. Winslow TPC Paris Decembre,
1
Double beta decay : physics case
Nature of neutrino Dirac or Majorana Neutrino mass hierarchy Right-handed current interaction CP violation in leptonic sector Search of Supersymetry and new particles
2
Double beta decay observables
(A,Z) (A,Z+2) + 2 e- Mass vs Right-Handed Current mechanism Angular distribution MM RHC Ee1 – Ee2 distribution sum electron energy / Q Decay to Excited States (A,Z) (A, Z+2) + 2 e- + 1,2 g 1 or 2 additonnal g-rays Identification of daugther nucleus : Xe Ba e- F. Piquemal TPC 2014 (APC Paris)
3
Isotope choice F. Piquemal TPC 2014 (APC Paris)
Dueck et al. Phys,. Rev. D (2011) F. Piquemal TPC 2014 (APC Paris)
4
Isotope enrichment Nucleus Existing method R&D 48Ca
R&D in KAERI (Korea) for 48Ca enrichment by laser Nucleus Existing method R&D 48Ca Laser separation, gazeous diffusion 76Ge Centrifugation 82Se 96Zr Laser separation 100Mo 116Cd 130Te 136Xe 150Nd Centrifugation, Laser R&D in Russia for 150Nd enrichment by centrifugation R&D in France for 150Nd enrichment by laser F. Piquemal TPC 2014 (APC Paris)
5
Backgrounds Background origins M . t WITH Background NBckg . DE (y)
e :efficiency, M: Mass, t: time, Nbckg: Background events, DE: energie resolution, A: isotope mass Background origins Natural radioactivity Other sources of background: Muons (underground labs) g from ( (n,g) reactions , m bremstrahlung Muon spallation products a emitters from bulk or surface contaminations for calorimeters bb(2n) if modest energy resolution 208Tl (2.6 MeV g ) 214Bi (and radon) 208Tl (and thoron) E (MeV) 40K, 60Co,… Transistion energy Qbb Different strategies are possible to minimize the background F. Piquemal TPC 2014 (APC Paris)
6
Next generation of experiments
Calorimeter Tracker Ge diode 76Ge e, DE GERDA MAJORANA Tracko-calo 82Se (150Nd,48Ca) NBckg , isotopes SuperNEMO CUORE LUCIFER Lumineu Amore Bolometers 130Te,82Se,100Mo e, DE Pixellized CdZnTe 116Cd e, NBckd COBRA Liquid Xe 136Xe e,M,(Nbckd) EXO MTD EXO-gas NEXT TPC 136Xe, 150Nd e, NBckd KamLAND-Zen CANDLES SNO+ Borexino CdWO4 AMoRE Scintillator 136Xe, ,48Ca, 150Nd, 100Mo e, M F. Piquemal TPC 2014 (APC Paris)
7
Required background level
Goal of the next generation In case of bb(0n) through light neutrino exchange Isotope mass Required background level in the ROI ~ 10 kg 100 – 1000 cts/yr/ton (200 – 400kg 136Xe) ~ 100 kg 1 – 10 cts/yr/ton ~ 1000 kg 0.1 – 1 cts/yr/ton |mee| S T Petcov 2009 J. Phys.: Conf. Ser 10 kg: T1/2 > years kg: T1/2 > years : Next generation will use ≥ 100 kg (started with Xe experiments) Improvements of background level needed F. Piquemal TPC 2014 (APC Paris)
8
SuperNEMO Construction NEXT R&D EXO R&D MTD (DCBA) R&D COBRA R&D
Tracking experiments SuperNEMO Construction NEXT R&D EXO R&D MTD (DCBA) R&D COBRA R&D F. Piquemal TPC 2014 (APC Paris)
9
NEMO3 Unique feature e- e-
Tracking detector: drift chambers (6180 Geiger cells) t = 5 mm, z = 1 cm ( vertex ) Calorimeter (1940 plastic scintillators and PMTs) Energy Resolution FWHM=8 % (3 MeV) Identification e-,e+, Very high efficiency for background rejection Background Qbb [2.8 – 3.2 MeV] : cts/keV/kg/y Multi-isotope (7 measured at the same time) Running at Modane underground laboratory ( ) Unique feature Measurement of all kinematic parameters: individual energies and angular distribution E1 e- event e- E1+E2= 2088 keV t= 0.22 ns (vertex) = 2.1 mm E2 [2.8 – 3.2] MeV 18 observed events, ± 1.3 expected 100Mo T1/2 (bb0n) > y (90% C.L.) <mn> < 0.31– 0.79 eV Measurement of 7 isotopes bb(2n) half-lifes Excited states, Majoron limits for bb(0n)
10
SuperNEMO 20 modules A module Located in LSM extension
Demonstrator module 20 Modules Source : 82Se 7 kg 100 kg Drift chambers for tracking 2 0000 40 000 Electron calorimeter 500 10 000 g veto (up and down) 100 2 000 T1/2 sensitivity y (No background) y <m> sensitivity 200 – 400 meV 40 – 100 meV F. Piquemal TPC 2014 (APC Paris)
11
SuperNEMO Objective: to reach the background level for 100 kg
to perform a no background experiment with 7 kg isotope of 82Se in 2 yr Source 214Bi < 10 mBq/kg (NEMO3 100 mBq/kg) 208Tl < 2 mBq/kg (NEMO3 100 mBq/k) Calorimeter DE/E < 3 MeV (NEMO3 8.6% at 3MeV) Tracker 3.7 m long (NEMO3 2.7 m) t = 5 mm, z = 1 cm Radon < 0.15 mBq/m3 (NEMO3 5 mBq/m3) Wiring robot Global efficiency : 30 % (NEMO3 8%)
12
SuperNEMO Demonstrator status
Scintillators production and 8’’ Hamamatsu PMT’s in production FE digitizer boards OK, control and trigger boards under development Blocks, wall design and technical tests OK construction in progress 1st LSM in 2014 Calorimeter - Automated drift cells production ongoing with the wiring robot - First 1 / 4 tracker C0 tested for radon emanation and cells propulation - C0 commissioning at see-level and in 2014 Tracker - 5.5 kg of 82Se , 4.5 kg already purified. Purchase of 1.5 kg in progress - Source materials (glue, films,…) under HPGE and BiPO selection processes - Calibration sources deployment system and LED survey system under test Source F. Piquemal TPC 2014 (APC Paris)
13
SuperNEMO demonstrator module
Calorimeter Source Ultra low background detector Modular detector with 3 main components : Central source foil frame : 7 kg of isotope Tracking : drift chambers Calorimeter : 712 scintillators+ PMTs Shielded by iron (300 tons) and water Construction in progress Installation and commissioning at Modane Underground Laboratory 2015 – 2016 Data taking 2016 tracker No background expected for 2 years of data. 7 kg 82Se T1/2 > y <mn> < 0.16 – 0.44 eV
14
COBRA Cobra Use large amount of CdZnTe Semiconductor Detectors
Source = detector • Focus on 116Cd Semiconductor (Good energy resolution, clean) Room temperature Modular design (Coincidences) Tracking/Pixelisation („Solid state TPC“) K. Zuber, Phys. Lett. B 519,1 (2001) F. Piquemal TPC 2014 (APC Paris)
15
COBRA Cobra Objective : Massive background reduction by particle identification Bi-214 = Time coincidence of both 55 μm pixel real event alpha electron alpha electron Real event! Current spectrum (black), kg*days Background at 2813 keV about 1 ct/keV/kg/yr Currently ongoing upgrade: 64 detectors (in hand) 32 running at LNGS Pulse shape information rejection of surface events 116Cd peak region F. Piquemal TPC 2014 (APC Paris)
16
MTD (Magnetic Tracking Detector: temporary name) following of DCBA
Magnetic Tracking Detector (DCBA) MTD (Magnetic Tracking Detector: temporary name) following of DCBA Chamber cell : the same as DCBA-T3, Source plate: 80 m2/module Thickness: 40 mg/cm2, Source weight: 32 kg/module Expected Energy Resolution 3.4% at Qbb for 150Nd Multi-isotope 150Nd, 100Mo, 82Se Several modules to reach <mn> 50 meV F. Piquemal TPC 2014 (APC Paris)
17
Calorimetric experiments
GERDA II In progress CUORE In progress KamLAND-Zen In progress CANDLES Data taking SNO In preparation MAJORANA Completion of R&D LUCIFER R&D ZnMoO R&D Amore R&D CdWO R&D F. Piquemal TPC 2014 (APC Paris)
18
Ge diodes L. Winslow Neutrino 2014 F. Piquemal TPC 2014 (APC Paris)
19
GERDA II : Ge diodes Ge detectors in liquid nitrogen installed @ LNGS
Phase I: kg of enriched detectors Background level after Pulse shape discrimination 0.01 cts/(keV.kg.yr). Exposure 21.6 kg.yr GERDA: T1/2 > yr (90%CL) GERDA+ IGEX. HM T1/2 > yr <mn> < 0.2 – 0.4 eV
20
GERDA II : Ge diodes Integration of the elements of GERDA phase II
40 kg of enriched Ge detectors - First deployment of the liquid argon scintillation readout. - First pilot string will be deployed together with the LAr scintillation read out. - Deployment of the full array of enriched Ge detectors early next year. Phase II is designed to reach T1/2 > 1026 years. F. Piquemal TPC 2014 (APC Paris)
21
Majorana : Ge diodes Improvement of the radiopurity of the materials, Pulse shape Cryostat 1 (3 strings enrGe & 4 strings natGe) (Fall 2013) Cryostat 2 (up to 7 strings enrGe) (Fall 2014) Final design of demonstrator 30 kg of 76Ge and 10 kg of natGe Differs from Steve’s version F. Piquemal TPC 2014 (APC Paris)
22
KamLAND-ZEN (Kamioka)
Purification of liquid scintillator to remove 110mAg Improvement of spallation cut Improvement of fiducial volume selection F. Piquemal TPC 2014 (APC Paris)
23
KamLAND-ZEN prospectives
F. Piquemal TPC 2014 (APC Paris)
24
CUORE: bolometers 741 kg of TeO2 bolometers (206 kg of 130Te) @ LNGS
CUORE-0 has validated the energy resolution And background results are encouraging All the towers are assembled Cryostat cooled down to 6 mK with 470 kg of Cu Presently, cooling with 8 bolometers for test F. Piquemal TPC 2014 (APC Paris)
25
CANDLES III 96 CaF2: 305kg (57 g of 48Ca) + liquid scintillator
Measurement started in June 2011. CANDLES III @ Kamioka Cooling system(~0℃) (october 2014) Coils to compensate magnetic filed Improvement of energy resolution 4% Qbb Enrichment of 48Ca (2%) F. Piquemal TPC 2014 (APC Paris)
26
SNO+ NatTe dissolved in liquid scintillator (0.3% corresponding to 800 kg of 130Te 5 years of data F. Piquemal TPC 2014 (APC Paris)
27
Scintillating bolometers
Example of b/a rejection with a 5 g detector Light/Heat [keV/keV] Shape parameter Heat energy [keV] Heat energy [keV] F. Piquemal TPC 2014 (APC Paris)
28
Bolometric Light Detector
LUCIFER Scintillating bolometers to recognize the -induced background thanks to the readout of the scintillation light Zn82Se crystal (Ø=45mm, h= 55 mm) W=483 g Reflecting Foil PTFE supports Bolometric Light Detector Ge crystal Array of 36÷44 enriched (95%) Zn82Se crystals. Expected background in the ROI (2995 keV) is 3 c/keV/kg/y Energy resolution 10 keV FWHM F. Piquemal TPC 2014 (APC Paris)
29
Calibration aboveground spectrum
LUMINEU Calibration aboveground spectrum Two enriched crystals of 60 g each obtained Excellent performance aboveground (CSNSM, Orsay) No difference with respect to natural crystals nderground tests of a few large mass enriched crystals (foreseen within June 2015) If radiopurity is confirmed: Start-up of LUCINEU project (LUCIFER+LUMINEU) Systematic production of 40 crystals containing 7 kg of 100Mo (MoU INFN+IN2P3+ITEP) Cool down of this 40 crystal array during 2016 in LNGS and/or LSM (depending on cryostat availability)
30
Background (yr/keV/kg)
AMORE (Advanced Mo-based Rare process Experiment) 40Ca100MoO4 bolometers 15 keV FWHM, Eff = 0.8 AMoRE Pilot, 2015 5 bolometers de CaMoO 1,5 kg Stage Start (run, yr) Background (yr/keV/kg) Sensitivity limT1/2 (yr) m (eV) AMoRE pilot Jan (1) 0.01 ~1.5x1024 <0.3 – 0.9 AMoRE 10 Sep (3) 0.002 ~2x1025 AMoRE 200 Jan (5) 0.0002 ~41026 F. Piquemal TPC 2014 (APC Paris)
31
Studied isotopes Nat(48)Ca 116Cd 76Ge Nat(150)Nd 82Se 136Xe 48Ca 100Mo
GERDA MAJORANA KamLAND-Zen EXO - NEXO NEXT Lumineu AMoRE SuperNEMO LUCIFER COBRA CdWO4 CUORE SNO+ Borexino CANDLES Nat(48)Ca 116Cd 76Ge Nat(150)Nd 82Se 48Ca 150Nd CANDLES SuperNEMO AMoRE SNO+ MTD Borexino A dream ? 136Xe 100Mo 130Te F. Piquemal TPC 2014 (APC Paris)
32
Half-life to reach for <mn> = 50 meV
Experimental limit (90%CL) GERDA EXO-200 KamLAND-Zen CUORE NEMO3 NEMO3 Solotvina CANDLES NEMO3
33
Summary Present experiments at the level of T1/2 > 1024 – 1025 years <mn> < 0.15 – 0.5 eV Several experiments at 100 kg are needed to understand backgrounds and determine the best isotope and technique for higher mass Sensitivity : T1/2 > 1026 – 1027 years <mn> < 0.05 – 0.1 eV Starting to test of the inverted hierarchy scenario : starting of GERDA II, Majorana, SuperNEMO, SNO+, CUORE, scintilating bolometers Still a long way to reduce the background. In case of signal a tracking experiment will be needed to confirm it
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.