Download presentation
Presentation is loading. Please wait.
Published byJade Holt Modified over 9 years ago
2
1 Network Flow & Linear Programming Jeff Edmonds York University COSC 3101 Lecture 5 Optimization Problems Network Flow Def nNetwork Flow Def n Simple Example Application: Matching Flow Strategy Hill Climbing Augmenting Flow Primal-Dual Hill Climbing Min Cut Max Flow = Min Cut Running Time Linear Programming
3
2 Ingredients: Instances: The possible inputs to the problem. Solutions for Instance: Each instance has an exponentially large set of solutions. Cost of Solution: Each solution has an easy to compute cost or value. Specification : The input is one instance. : A valid solution with optimal cost. (minimum or maximum) Optimization Problems
4
3 Instance: A Network is a directed graph G Edges represent pipes that carry flow Each edge has a maximum capacity c A source node s out of which flow leaves A sink node t into which flow arrives Goal: Max Flow Network Flow
5
4 Instance: A Network is a directed graph G Edges represent pipes that carry flow Each edge has a maximum capacity c A source node s out of which flow leaves A sink node t into which flow arrives Network Flow
6
5 For some edges/pipes, it is not clear which direction the flow should go in order to maximize the flow from s to t. Hence we allow flow in both directions.
7
6 Network Flow u v 1719 244 This edge/pipe allows download at a rate of 1719kbps OR upload at a rate of 244kbps Not both simultaneously
8
7 Network Flow u v 75 10 This edge/pipe allows flow to the right at a rate of 75 L/sec OR to the left right at a rate of 10 L/sec
9
8 Network Flow u v 15/75 0/10 This edge/pipe allows flow to the right at a rate of 75 L/sec OR to the left right at a rate of 10 L/sec Currently the flow is to the right at 15 L/sec
10
9 Network Flow u v 0/75 5/10 This edge/pipe allows flow to the right at a rate of 75 L/sec OR to the left right at a rate of 10 L/sec Currently the flow is to the left at 5 L/sec
11
10 Solution: The amount of flow F through each edge. Flow can’t exceed capacity i.e. F c. Unidirectional flow F 0 and F = 0 or F = 0 and F 0 Some texts: F = -F Network Flow
12
11 Solution: The amount of flow F through each edge. Flow F can’t exceed capacity c. Unidirectional flow No leaks, no extra flow. Network Flow
13
12 Solution: The amount of flow F through each edge. Flow F can’t exceed capacity c. Unidirectional flow No leaks, no extra flow. For each node v: flow in = flow out u F = w F Except for s and t. Network Flow
14
13 Value of Solution: Flow from s into the network minus flow from the network back into s. rate(F) = u F = flow from network into t minus flow back in. = u F - v F - v F What about flow back into s? Goal: Max Flow Network Flow
15
14 A network with its edge capacities Network Flow What is the maximum that can flow from s to t?
16
15 A network with its edge capacities Network Flow The max total rate of the flow is 1+2-0 = 3. flow/capacity = 2/5 Prove that total can not be higher.
17
16 No more flow can be pushed along the top path because the edge is at capacity. Similarly, the edge. No flow is pushed along the bottom path because this would decrease the total from s to t. Network Flow
18
17 is a minimum cut Its capacity is the sum of the capacities crossing the cut = 1+2 = 3. is not included in because it is going in the wrong direction. Network Flow
19
18 The edges crossing forward across the cut are at capacity those crossing backwards have zero flow. This is always true. Network Flow
20
19 The maximum flow is 1+2=3 The minimum cut is 1+2=3. These are always equal. Network Flow
21
20 An Application: Matching SamMary BobBeth JohnSue FredAnn Who loves whom. Who should be matched with whom so as many as possible matched and nobody matched twice? 3 matches Can we do better? 4 matches
22
21 An Application: Matching st c = 1 Total flow out of u flow into u 1 Boy u matched to at most one girl. 1 c = 1 Total flow into v = flow out of v 1 Girl v matched to at most one boy. 1 u v
23
22 Network Flow Strategy: Push flow into s. Must make decisions. Get stuck and must backtrack. Difficult and time consuming. s c=100 f=100 c=100 c=1 f=100
24
23 Network Flow Strategy: Find a path for a single drop. Push as much flow through as fits. w = augment = Min Path c
25
24 Network Flow Strategy: Find a path for a single drop. Push as much flow through as fits. w = augment = Min Path c flow/capacity = 20/21
26
25 Network Flow Given Flow F Construct Augmenting Graph G F Find path P using BFS, DFS, or generic search algorithm Let w be the max amount flow can increase along path P. Increase flow along path P by w. i.e newF = oldF + w × P +w
27
26 Network Flow Given Flow F Construct Augmenting Graph G F Find path P using BFS, DFS, or generic search algorithm No path Stop.
28
27 Hill Climbing We have a valid solution. (not necessarily optimal) Take a step that goes up. measure progress Value of our solution. Problems: Exit Can't take a step that goes up. Running time? Initially have the “zero Local Max Global Max Can our Network Flow Algorithm get stuck in a local maximum? Make small local changes to your solution to construct a slightly better solution. If you take small step, could be exponential time.
29
28 Network Flow Previous Input Previous Output Same Input Can our Network Flow Algorithm get stuck in local max? Worse Output Need only one example. Yes!
30
29 Network Flow
31
30 Network Flow Previous Input Previous Output Same Input Yes! Our Network Flow Algorithm can get stuck. Worse Output Need only one example.
32
31 Hill Climbing Avoiding getting stuck in a local maximum Good ExecutionBad Execution Made better choices of direction Hard Back up an retry Exponential time Define a bigger step
33
32 Hill Climbing Different Solutions Current Solution Alg defines to where alg can step i.e. what small local changes can be made to current solution This defines the topography
34
33 Hill Climbing Different Solutions Current Solution Define a slightly bigger step This defines the topography Perhaps removes some local maxima
35
34 Network Flow Previous Input Previous Output Same Input Worse Output Mistake? Putting 2 through this edge
36
35 Network Flow Mistake? Putting 2 through this edge We need to decrease the flow in this edge. But if we decrease the total flow then the algorithm might run exponentially or forever. We need to decrease the flow in this edge AND increase the total flow.
37
36 Network Flow Let us focus on how much we can CHANGE the rate of flow through a given edge.
38
37 Network Flow u v 15/75 0/10 This edge/pipe allows flow to the right at a rate of 75 L/sec OR to the left right at a rate of 10 L/sec Currently the flow is to the right at 15 L/sec
39
38 Network Flow u v 15/75 0/10 Currently the flow is to the right at 15 L/sec u v F [-10,75] Eqv Flow Graph F = 15 15
40
39 u v 0/75 10/10 Currently the flow is to the left at 10 L/sec u v F [-10,75] Eqv Flow Graph F = -10 15 Network Flow
41
40 Network Flow Add 5 flow to right u v F [-10,75] Eqv Flow Graph F = 15 15 Current Flow 20 u v F [-10,75] Eqv Flow Graph F = 20 Resulting Flow
42
41 Network Flow Add -5 flow to right u v F [-10,75] Eqv Flow Graph F = 15 15 Current Flow 10 u v F [-10,75] Eqv Flow Graph F = 10 Resulting Flow Equivalent Add 5 flow to left
43
42 Network Flow Add -20 flow to right u v F [-10,75] Eqv Flow Graph F = 15 15 Current Flow -5 u v F [-10,75] Eqv Flow Graph F = -5 Resulting Flow Add 20 flow to left Equivalent
44
43 Network Flow -5 u v F [-10,75] Eqv Flow Graph F = -5 Resulting Flow u v -5/75 0/10 Flow Graph u v 0/75 5/10 Flow Graph Equivalent
45
44 Network Flow 15+Δ ≤ 75 F +Δ ≤ c Δ ≤ c -F Walking Δ u v 15+ Δ /75 0/10 New Flow Graph u v F [-10,75] Eqv Flow Graph F = 15 15 75-15 = 60 Allowed change to the right
46
45 Network Flow 15-Δ ≥ -10 F -Δ ≥ -c Δ ≤ F + c u v 15- Δ /75 0/10 New Flow Graph Walking Δ u v F [-10,75] Eqv Flow Graph F = 15 Allowed Flow ≠ Allowed Change in Flow 15 Allowed change to the left 15+10=25
47
46 Network Flow Δ ≤ F + c u v F [-10,75] Eqv Flow Graph F = 15 Δ ≤ c -F u v Augmentation Graph 15 75-15 = 60 Allowed change to the right Allowed change to the left 15+10=25
48
47 Network Flow Given Flow F Construct Augmenting Graph G F Find path P Old New Where we got stuck before
49
48 Network Flow Given Flow F Construct Augmenting Graph G F Find path P Let w be the max amount flow can increase along path P. Increase flow along path P by w. i.e newF = oldF + w × P +w -w ?
50
49 Network Flow Given Flow F Construct Augmenting Graph G F Find path P using BFS, DFS, or generic search algorithm No path Stop.
51
50 Network Flow Previous Input Previous Output Same Input Worse Output Same Output
52
51
53
52 An Application: Matching SamMary BobBeth JohnSue FredAnn Who loves whom. Who should be matched with whom so as many as possible matched and nobody matched twice? 3 matches Can we do better? 4 matches
54
53 An Application: Matching st Flow st Augmentation Graph Augmentation Path Alternates adding edge removing edge adding edge removing edge adding edge Extra edge added st New Flow
55
54 An Application: Matching SamMary BobBeth JohnSue FredAnn Who loves whom. Who should be matched with whom so as many as possible matched and nobody matched twice? 3 matches Can we do better? 4 matches
56
55 Network Flow Can our Network Flow Algorithm get stuck in local max? Need to prove for every input network for every choice of augmenting paths Maximum Flow is found! No! How?
57
56 Primal-Dual Hill Climbing Mars settlement has hilly landscape and many layers of roofs.
58
57 Primal-Dual Hill Climbing Primal Problem: Exponential # of locations to stand. Find a highest one. Dual problem: Exponential # of roofs. Find a lowest one.
59
58 Primal-Dual Hill Climbing Prove: Every roof is above every location to stand. R L height(R) height(L) height(R min ) height(L max ) Is there a gap?
60
59 Primal-Dual Hill Climbing Prove: For every location to stand either: the alg takes a step up or the alg gives a reason that explains why not by giving a ceiling of equal height. i.e. L [ L’ height(L’) height(L) or R height(R) = height(L)] or But R L height(R) height(L) No Gap
61
60 Primal-Dual Hill Climbing Prove: For every location to stand either: the alg takes a step up or the alg gives a reason that explains why not by giving a ceiling of equal height. i.e. L [ L’ height(L’) height(L) or R height(R) = height(L)] or Can't go up from this location and no matching ceiling. Can't happen! ?
62
61 Primal-Dual Hill Climbing Prove: For every location to stand either: the alg takes a step up or the alg gives a reason that explains why not by giving a ceiling of equal height. i.e. L [ L’ height(L’) height(L) or R height(R) = height(L)] or No local maximum!
63
62 Primal-Dual Hill Climbing Claim: Primal and dual have the same optimal value. height(R min ) = height(L max ) Proved: R L, height(R) height(L) Proved: Alg runs until it provides L alg and R alg height(R alg ) = height(L alg ) No Gap height(R min ) height(R alg ) height(L alg ) height(L max ) height(R min ) height(L max ) L alg witness that height(L max ) is no smaller. R alg witness that height(L max ) is no bigger. Exit
64
63 A network with its edge capacities Network Flow What is the maximum that can flow from s to t?
65
64 A network with its edge capacities Network Flow The max total rate of the flow is 1+2-0 = 3. flow/capacity = 2/5 Prove that total can not be higher.
66
65 No more flow can be pushed along the top path because the edge is at capacity. Similarly, the edge. No flow is pushed along the bottom path because this would decrease the total from s to t. Network Flow
67
66 is a minimum cut Its capacity is the sum of the capacities crossing the cut = 1+2 = 3. is not included in because it is going in the wrong direction. Network Flow
68
67 The edges crossing forward across the cut are at capacity those crossing backwards have zero flow. This is always true. Network Flow
69
68 The maximum flow is 1+2=3 The minimum cut is 1+2=3. These are always equal. Network Flow
70
69 Primal-Dual Network Flow Primal Problem: Max Flow Dual Problem: Min Cut What are the roofs to the flows?
71
70 Instance: A Network is a directed graph G Special nodes s and t. Edges represent pipes that carry flow Each edge has a maximum capacity c Min Cut s t
72
71 Instance: A Network is a directed graph G Special nodes s and t. Edges represent pipes that carry flow Each edge has a maximum capacity c Min Cut
73
72 Solution: C = partition of nodes with s U, t V. Min Cut s t U V York UC Berkeley = Canada = USA
74
73 Min Cut s t York UC Berkeley Ontario Solution: C = partition of nodes with s U, t V.
75
74 Min Cut s t York UC Berkeley Toronto Solution: C = partition of nodes with s U, t V.
76
75 Min Cut s t York UC Berkeley York Solution: C = partition of nodes with s U, t V.
77
76 Min Cut s t York UC Berkeley UCB Solution: C = partition of nodes with s U, t V.
78
77 Min Cut s t York UC Berkeley Berkeley Solution: C = partition of nodes with s U, t V.
79
78 Min Cut s t York UC Berkeley U V Solution: C = partition of nodes with s U, t V.
80
79 Value Solution C= : cap(C) = how much can flow from U to V = u U,v V c Min Cut s t U V u v Goal: Min Cut
81
80 Theorem: For all Networks Max F rate(F) = Min C cap(C) Prove: F,C rate(F) cap(C) Max Flow = Min Cut U V u v Prove: flow F, alg either finds a better flow F or finds cut C such that rate(F) = cap(C) Alg stops with an F and C for which rate(F) = cap(C) F witnesses that the optimal flow can't be less C witnesses that it can't be more. Exit
82
81 cap(C) = how much can flow from U to V = u U,v V c rate(F,C) = Flow from U to V minus flow V to U = u U,v V F - F Lemma: rate(F) = rate(F,C) cap(C) Max Flow = Min Cut Prove: flow F, cut C rate(F) cap(C) s t U V York UC Berkeley = Canada = USA + - F c & F 0 No leaks, no extra flow.
83
82 Lemma: F,C rate(F,C) = rate(F) Proof: By induction on the size of U. Base case: C = rate(F) = Flow from s into the network minus flow from the network back into s = u F - v F = rate(F,C) where C = Max Flow = Min Cut s t York UC Berkeley + -
84
83 Lemma: F,C rate(F,C) = rate(F) Proof: By induction on the size of C. Base case: C = Inductive step: Move nodes across C one at a time. Max Flow = Min Cut Flow into x = Flow out. Hence, flow across cut does not change. rate(F) = rate(F,C) cap(C)
85
84 Theorem: For all Networks Max F rate(F) = Min C cap(C) Prove: F,C rate(F) cap(C) Max Flow = Min Cut U V u v Prove: flow F, alg either finds a better flow F or finds cut C such that rate(F) = cap(C)
86
85 Given Flow F Construct Augmenting Graph G F Find path P Let w be the max amount flow can increase along path P. Increase flow along path P by w. i.e newF = oldF + w × P +w -w Max Flow = Min Cut
87
86 Given Flow F Construct Augmenting Graph G F Find path P using BFS, DFS, or generic search algorithm No path Stop Max Flow = Min Cut
88
87 Let F alg be this final flow. Let cut C alg =, where U are the nodes reachable from s in the augmented graph and V not. Claim: rate(F alg ) = cap(C alg ) Max Flow = Min Cut Bad example because U might contain more than s.
89
88 Max Flow = Min Cut Prove: rate(F alg ) = cap(C alg ) Prove: rate(F alg,C alg ) = cap(C alg ) =
90
89 cap(C) = how much can flow from U to V = u U,v V c rate(F,C) = Flow from U to V minus flow V to U = u U,v V F - F Max Flow = Min Cut Prove: rate(F alg,C alg ) = cap(C alg ) + F /c u v F<u,v>/c<u,v>F<u,v>/c<u,v> Flow Graph U V v’u’ -
91
90 Max Flow = Min Cut F /c u v F<u,v>/c<u,v>F<u,v>/c<u,v> Flow Graph U V v’u’ need equal need zero + - cap(C) = how much can flow from U to V = u U,v V c rate(F,C) = Flow from U to V minus flow V to U = u U,v V F - F Prove: rate(F alg,C alg ) = cap(C alg )
92
91 Max Flow = Min Cut u v F<u,v>/c<u,v>F<u,v>/c<u,v> Flow Graph c<u,v>-F<u,v>c<u,v>-F<u,v> F +c U V v’u’ F /c u Augmentation Graph U V v’ v u’ reachable from s = = not not edges =0 need equal + need zero - cap(C) = how much can flow from U to V = u U,v V c rate(F,C) = Flow from U to V minus flow V to U = u U,v V F - F Prove: rate(F alg,C alg ) = cap(C alg )
93
92 Theorem: For all Networks Max F rate(F) = Min C cap(C) Prove: F,C rate(F) cap(C) Max Flow = Min Cut U V u v Prove: flow F, alg either finds a better flow F or finds cut C such that rate(F) = cap(C) Alg stops with an F and C for which rate(F) = cap(C) F witnesses that the optimal flow can't be less C witnesses that it can't be more.
94
93 Hill Climbing Problems: Can our Network Flow Algorithm get stuck in a local maximum? Local Max Global Max No!
95
94 Hill Climbing Problems: Running time? If you take small step, could be exponential time.
96
95 Network Flow
97
96 Network Flow Add flow 1
98
97 Network Flow Add flow 1
99
98 Hill Climbing Problems: Running time? If each iteration you take the biggest step possible, Alg is poly time in number of nodes and number of bits in capacities. If each iteration you take path with the fewest edges Alg is poly time in number of nodes
100
99 Taking the biggest step possible
101
100 Linear Programming
102
101 A Hotdog A combination of pork, grain, and sawdust, …
103
102 Constraints: Amount of moistureAmount of moisture Amount of protein,Amount of protein, …
104
103 The Hotdog Problem Given today’s prices, what is a fast algorithm to find the cheapest hotdog?
105
104 Abstract Out Essential Details Cost: 29, 8, 1, 2 Amount to add: x 1, x 2, x 3, x 4 pork grainwater sawdust 3x 1 + 4x 2 – 7x 3 + 8x 4 ≤ 12 2x 1 - 8x 2 + 4x 3 - 3x 4 ≤ 24 -8x 1 + 2x 2 – 3x 3 - 9x 4 ≤ 8 x 1 + 2x 2 + 9x 3 - 3x 4 ≤ 31 Constraints: moisturemoisture protein,protein, … 29x 1 + 8x 2 + 1x 3 + 2x 4 Cost of Hotdog:
106
105 29x 1 + 8x 2 + 1x 3 + 2x 4 Subject to: Minimize: Abstract Out Essential Details 3x 1 + 4x 2 – 7x 3 + 8x 4 ≤ 12 2x 1 - 8x 2 + 4x 3 - 3x 4 ≤ 24 -8x 1 + 2x 2 – 3x 3 - 9x 4 ≤ 8 x 1 + 2x 2 + 9x 3 - 3x 4 ≤ 31
107
106 A Fast Algorithm For decades people thought that there was no fast algorithm. Then one was found! Theoretical Computer Science finds new algorithms every day. 3x 1 + 4x 2 – 7x 3 + 8x 4 ³ 12 2x 1 - 8x 2 + 4x 3 - 3x 4 ³ 24 -8x 1 + 2x 2 – 3x 3 - 9x 4 ³ 8 x 1 + 2x 2 + 9x 3 - 3x 4 ³ 31 29x 1 + 8x 2 + 1x 3 + 2x 4 Subject to: Minimize:
108
107 Network Flow as a Linear Program Given an instance of Network Flow: > express it as a Linear Program: The variables: Maximize: Subject to: Flows f for each edge. : F c. (Flow can't exceed capacity) v: u F = w F (flow in = flow out) rate(F) = u F - v F
109
108
110
109 Primal Dual
111
110 End
112
111 Network Flow Locally in each edge, we see how much we can change the flow. Allowed Flow ≠ Allowed Change in Flow People find this hard. This is my first attempt to explain it.
113
112 Network Flow u v 0/75 0/10 Old Flow Graph Walking 10 u v 10/75 0/10 New Flow Graph
114
113 Network Flow u v 0/75 0/10 Old Flow Graph Walking 10 u v 0/75 10/10 New Flow Graph
115
114 Network Flow u v 0/75 0/10 Old Flow Graph Walking -10 u v -10/75 0/10 New Flow Graph Same Walking 10 u v 0/75 10/10 New Flow Graph Not allowed
116
115 Network Flow Walking -10 u v -10/75 0/10 New Flow Graph Same Walking 10 u v 0/75 10/10 New Flow Graph Not allowed u v F [-10,75] Eqv Flow Graph F = -10
117
116 Network Flow 10+Δ ≤ 75 F +Δ ≤ c Δ ≤ c -F Walking Δ u v 10+ Δ /75 0/10 New Flow Graph u v F [-10,75] Eqv Flow Graph F = 10
118
117 Network Flow 10-Δ ≥ -10 F -Δ ≥ -c Δ ≤ F + c u v 10- Δ /75 0/10 New Flow Graph Walking Δ u v F [-10,75] Eqv Flow Graph F = 10
119
118 Network Flow Δ ≤ F + c u v F [-10,75] Eqv Flow Graph F = 10 Δ ≤ c -F u v Augmentation Graph
120
119 Network Flow Locally in each edge, we see how much we can change the flow. Allowed Flow ≠ Allowed Change in Flow People find this hard. This is my second attempt to explain it.
121
120 Network Flow u v 0/75 0/10 Flow Graph u v 75 10 Augmentation Graph
122
121 Network Flow 75-21=54 u v 21/75 0/10 Flow Graph u v Augmentation Graph 2 21+2=23 Walking
123
122 Network Flow 75-21=54 u v 21/75 0/10 Flow Graph u v Augmentation Graph 10 21-10=11 10 Edge shouldn’t have flow in both directions. 0 10 ? Walking 10 Walking -10
124
123 Network Flow 75-21=54 u v 11/75 0/10 Flow Graph u v Augmentation Graph 10 ? Capacity of 10 not met
125
124 Network Flow 75-21=54 u v 21/75 0/10 Flow Graph u v Augmentation Graph 21 10 ? Capacity of 10 exceeded 21
126
125 Network Flow 75-21=54 u v 21/75 0/10 Flow Graph u v Augmentation Graph 21 21-21=0 10 ? Capacity of 10 not met Walking 21 Walking -21
127
126 Network Flow 75-21=54 u v 21/75 0/10 Flow Graph u v Augmentation Graph 21+10 21-21=0 10 ? 21+10=31 Capacity of 10 met Walking 21 and another 10
128
127 Network Flow 75-21=54 21+10=31 u v 21/75 0/10 Flow Graph u v Augmentation Graph 25 21-25=-4 4 0 Walking 25
129
128 u v F<u,v>/c<u,v>F<u,v>/c<u,v> 0/c Flow Graph u v Augmentation Graph F<u,v>+wF<u,v>+w w Walking c<u,v>-F<u,v>c<u,v>-F<u,v> F<u,v>+c<v,u>F<u,v>+c<v,u> c<u,v>c<u,v> F<u,v>F<u,v> c<v,u>c<v,u> Network Flow
130
129 u v F<u,v>/c<u,v>F<u,v>/c<u,v> 0/c Flow Graph u v Augmentation Graph F<u,v>-wF<u,v>-w c<u,v>-F<u,v>c<u,v>-F<u,v> F<u,v>+c<v,u>F<u,v>+c<v,u> c<u,v>c<u,v> F<u,v>F<u,v> c<u,v>c<u,v> w Walking Network Flow
131
130
132
131 Network Flow How much flow can I have in each direction? u v 0/75 0/10 Where can I stand in each direction?
133
132 Network Flow How much flow can I have in each direction? 75 to the right u v 75/75 0/10 Where can I stand in each direction?
134
133 Network Flow How much flow can I have in each direction? 75 to the right u v 0/75 10/10 10 to the left Where can I stand in each direction?
135
134 Network Flow u v 15/75 0/10 Add 5 flow to right Walking 5 u v 20/75 0/10 15 20
136
135 Network Flow u v 15/75 0/10 Add 75-15=60 flow to right Walking 75-15=60 u v 75/75 0/10 15
137
136 Network Flow u v 15/75 0/10 How much flow can I add to right How much can I change my position to the right? 75-15=60 15 u v 75-15=60 Augmentation Graph
138
137 Network Flow u v f/c 0/10 How much flow can I add to right How much can I change my position to the right? 75-15=60 15 f-c u v Augmentation Graph
139
138 Network Flow u v 15/75 0/10 Add 5 flow to left Walking 5 u v 15/75 5/10 Edge shouldn’t have flow in both directions. 15 10
140
139 Network Flow u v 15/75 0/10 Add 5 flow to left Walking 5 u v 15-5=10/75 0/10 15 10
141
140 Network Flow u v 15/75 0/10 Add 15 flow to left Walking 15 u v 15-15=0/75 0/10 15
142
141 Network Flow u v 15/75 0/10 Add 15+5=20 flow to left Walking 15+5=20 u v -5/75 0/10 Edge shouldn’t have negative flow. 15 -5
143
142 Network Flow u v 15/75 0/10 Add 15+5=20 flow to left Walking 15+5=20 u v 0/75 5/10 15 -5
144
143 Network Flow u v 15/75 0/10 Add 15+10=25 flow to left Walking 15+10=25 u v 0/75 10/10 15
145
144 Network Flow u v 15/75 0/10 How much flow can I add to left How much can I change my position to the left? 15+10=25 15 u v 15+10=25 Augmentation Graph
146
145 Network Flow u v f/75 0/c How much flow can I add to left How much can I change my position to the left? 15+10=25 15 u v f+c Augmentation Graph
147
146 u v F<u,v>/c<u,v>F<u,v>/c<u,v> 0/c Flow Graph u v Augmentation Graph F<u,v>+wF<u,v>+w w Walking c<u,v>-F<u,v>c<u,v>-F<u,v> F<u,v>+c<v,u>F<u,v>+c<v,u> c<u,v>c<u,v> F<u,v>F<u,v> c<v,u>c<v,u> Network Flow
148
147 u v F<u,v>/c<u,v>F<u,v>/c<u,v> 0/c Flow Graph u v Augmentation Graph F<u,v>-wF<u,v>-w c<u,v>-F<u,v>c<u,v>-F<u,v> F<u,v>+c<v,u>F<u,v>+c<v,u> c<u,v>c<u,v> F<u,v>F<u,v> c<u,v>c<u,v> w Walking Network Flow
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.