Download presentation
1
Finite Automata Costas Busch - RPI
2
Finite Automaton Input String Output Finite String Automaton
Costas Busch - RPI
3
Finite Accepter Input String Output “Accept” or Finite “Reject”
Automaton Costas Busch - RPI
4
Transition Graph Abba -Finite Accepter initial state final state
Costas Busch - RPI
5
Initial Configuration
Input String Costas Busch - RPI
6
Reading the Input Costas Busch - RPI
7
Costas Busch - RPI
8
Costas Busch - RPI
9
Costas Busch - RPI
10
Input finished Output: “accept” Costas Busch - RPI
11
Rejection Costas Busch - RPI
12
Costas Busch - RPI
13
Costas Busch - RPI
14
Costas Busch - RPI
15
Input finished Output: “reject” Costas Busch - RPI
16
Another Rejection Costas Busch - RPI
17
Output: “reject” Costas Busch - RPI
18
Another Example Costas Busch - RPI
19
Costas Busch - RPI
20
Costas Busch - RPI
21
Costas Busch - RPI
22
Input finished Output: “accept” Costas Busch - RPI
23
Rejection Costas Busch - RPI
24
Costas Busch - RPI
25
Costas Busch - RPI
26
Costas Busch - RPI
27
Input finished Output: “reject” Costas Busch - RPI
28
Formalities Deterministic Finite Accepter (DFA) : set of states
: input alphabet : transition function : initial state : set of final states Costas Busch - RPI
29
Input Alphabet Costas Busch - RPI
30
Set of States Costas Busch - RPI
31
Initial State Costas Busch - RPI
32
Set of Final States Costas Busch - RPI
33
Transition Function Costas Busch - RPI
34
Costas Busch - RPI
35
Costas Busch - RPI
36
Costas Busch - RPI
37
Transition Function Costas Busch - RPI
38
Extended Transition Function
Costas Busch - RPI
39
Costas Busch - RPI
40
Costas Busch - RPI
41
Costas Busch - RPI
42
Observation: There is a walk from to with label
Costas Busch - RPI
43
Example: There is a walk from to with label
Costas Busch - RPI
44
Recursive Definition Costas Busch - RPI
45
Costas Busch - RPI
46
Languages Accepted by DFAs
Take DFA Definition: The language contains all input strings accepted by = { strings that drive to a final state} Costas Busch - RPI
47
Example accept Costas Busch - RPI
48
Another Example accept accept accept Costas Busch - RPI
49
Formally For a DFA Language accepted by : Costas Busch - RPI
50
Observation Language rejected by : Costas Busch - RPI
51
More Examples trap state accept Costas Busch - RPI
52
= { all strings with prefix }
accept Costas Busch - RPI
53
= { all strings without substring } Costas Busch - RPI
54
Regular Languages A language is regular if there is a DFA such that
All regular languages form a language family Costas Busch - RPI
55
Examples of regular languages:
{ all strings with prefix } { all strings with prefix } { all strings without substring } There exist automata that accept these Languages (see previous slides). Costas Busch - RPI
56
Another Example The language is regular: Costas Busch - RPI
57
There exist languages which are not Regular:
Example: There is no DFA that accepts such a language (we will prove this later in the class) Costas Busch - RPI
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.