Download presentation
Presentation is loading. Please wait.
1
Chapter 9: Phase Diagrams
ISSUES TO ADDRESS... • When we combine two elements... what is the resulting equilibrium state? • In particular, if we specify... -- the composition (e.g., wt% Cu - wt% Ni), and -- the temperature (T ) then... How many phases form? What is the composition of each phase? What is the amount of each phase? What is the structure of each phase Phase Behavior Laughlin p. 67 Phase A Phase B Nickel atom Copper atom
2
Components and Phases • Components: • Phases: Optical Mettalography α
The elements or compounds which are present in the alloy (e.g., Al and Cu) • Phases: The physically and chemically distinct material regions that form (e.g., α and β). Optical Mettalography α (lighter phase) β (darker 1µm phase) Aluminum-Copper Alloy
3
Solubility Limit • Solution – solid, liquid, or gas solutions, single phase • Mixture – more than one phase • Solubility Limit: Maximum concentration for which only a single phase solution exists. Sugar/Water Phase Diagram Temperature (ºC) 20 40 60 80 100 Composition (wt% sugar) L (syrup) Solubility Limit (liquid) + S (solid sugar) 4 6 8 10 Question: What is the solubility limit for sugar in water at 20ºC? Answer: 65 wt% sugar. At 20ºC, if C < 65 wt% sugar: syrup At 20ºC, if C > 65 wt% sugar: syrup + sugar 65 Problem 9.2: At 170°C, what is the maximum solubility (a) of Pb in Sn? (b) of Sn in Pb?
The lead-tin phase diagram is shown in the Animated Figure 9.8.
4
Isomorphous Binary Phase Diagram
Cu-Ni phase diagram wt% Ni 20 40 60 80 100 1000 1100 1200 1300 1400 1500 1600 T(ºC) L (liquid) α solid solution L + liquidus solidus • System is: -- binary 2 components: Cu and Ni. -- isomorphous i.e., complete solubility of one component in another
5
Criteria for Solid Solubility: Hume–Rothery rules
Same crystal structure Similar electronegativities Similar atomic radii Crystal Structure electroneg r (nm) Ni FCC 1.9 0.1246 Cu 1.8 0.1278 Ni and Cu are totally soluble in one another for all proportions.
6
Structure BCC FCC
7
Periodic Table
8
Determination of phases present
• If we know T and Co, then we know which phases are present. Cu-Ni phase diagram wt% Ni 20 40 60 80 100 1000 1100 1200 1300 1400 1500 1600 T(ºC) L α + • Examples: B (1250ºC,35) A(1100ºC, 60 wt% Ni): 1 phase: α B (1250ºC, 35 wt% Ni): 2 phases: L + α A(1100ºC,60)
9
Determination of phase compositions: Lever Rule
Tie line –– also sometimes called an isotherm wt% Ni 20 1200 1300 T(ºC) L α 3 4 5 + B T tie line C0 CL Cα S R What fraction of each phase? Think of the tie line as a lever (teeter-totter) ML Mα R S
10
Slow Cooling of a Cu-Ni Alloy
C0 = 35 wt% Ni alloy T(ºC) L L: 35wt%Ni α: 46 wt% Ni L: 35 wt% Ni 130 46 35 43 32 a: 43 wt% Ni L: 32 wt% Ni 24 36 L: 24 wt% Ni a: 36 wt% Ni 120 α 110 20 3 35 4 5 C0 wt% Ni
11
Cored vs Equilibrium Structures
Uniform Ca: 35 wt% Ni T(ºC) L 130 46 35 43 32 24 36 120 First α to solidify: 46 wt% Ni α Last a to solidify: < 35 wt% Ni 110 20 3 35 4 5 C0 wt% Ni
12
Mechanical Properties: Cu-Ni System
• Effect of solid solution strengthening on: -- Tensile strength (TS) -- Ductility (%EL) Tensile Strength (MPa) Composition, wt% Ni Cu Ni 20 40 60 80 100 200 300 400 TS for pure Ni TS for pure Cu Elongation (%EL) Composition, wt% Ni Cu Ni 20 40 60 80 100 30 50 %EL for pure Ni for pure Cu
13
Binary-Eutectic Systems
=low melting 2 components Cu-Ag system Ex.: Cu-Ag system 1200 • 3 single phase regions (L, α, β) L (liquid) 1000 α L + α L + β 800 779ºC β TE 8.0 71.9 91.2 600 α + β 400 200 20 40 60 CE 80 100 wt% Ag Eutectic Phase Reaction: cooling heating
14
Microstructural Development in Eutectic Systems I
L + α 200 T(ºC) wt% Sn 10 2 20 C0 300 100 30 β 400 (room T solubility limit) TE Pb-Sn • For alloys for which C0 < 2 wt% Sn • Result: at room temperature -- polycrystalline with grains of a phase having composition C0 L: C0 wt% Sn α L α: C0 wt% Sn
15
Microstructural Development in Eutectic Systems II
L: C0 wt% Sn • For alloys for which 2 wt% Sn < C0 < 18.3 wt% Sn • Result: at temperatures in α + β range -- polycrystalline with a grains and small β-phase particles L + α 200 T(ºC) C , wt% Sn 10 18.3 20 C0 300 100 30 β 400 (sol. limit at TE) TE 2 (sol. limit at T room ) L α a: C0 wt% Sn α β
16
Microstructural Development in Eutectic Systems III
• For alloy of composition C0 = CE • Result: Eutectic microstructure (lamellar structure) -- alternating layers (lamellae) of α and β phases. 200 T(ºC) wt% Sn 20 60 80 100 300 L α β + 183ºC 40 TE 160 μm Micrograph of Pb-Sn eutectic microstructure L: C0 wt% Sn CE 61.9 18.3 α: 18.3 wt%Sn 97.8 β: 97.8 wt% Sn
17
Lamellar Eutectic Structure
18
Microstructural Development in Eutectic Systems IV
• For alloys for which 18.3 wt% Sn < C0 < 61.9 wt% Sn • Result: α phase particles and a eutectic microconstituent WL = (1- W α ) = 0.50 Cα = 18.3 wt% Sn CL = 61.9 wt% Sn S R + Wα = • Just above TE : 200 T(ºC) wt% Sn 20 60 80 100 300 L α + 40 TE L: C0 L α 18.3 61.9 S R 97.8 S R primary α eutectic β • Just below TE : C α = 18.3 wt% Sn β = 97.8 wt% Sn S R + W = = 0.73 = 0.27
19
Hypoeutectic & Hypereutectic
300 L T(ºC) L + α α β 200 L + β TE System) α + β 100 175 mm α hypoeutectic: C0 = 50 wt% Sn hypereutectic: (illustration only) β C, wt% Sn 20 40 60 80 100 eutectic 61.9 eutectic: C0 = 61.9 wt% Sn 160 mm eutectic micro-constituent
20
Intermetallic Compounds
Mg2Pb Note: intermetallic compound exists as a line - not an area – because stoichiometry (i.e. composition of a compound) is fixed.
21
Eutectic, Eutectoid, & Peritectic
Eutectic - liquid transforms to two solid phases L S1+S3 (For Pb-Sn, 183ºC, 61.9 wt% Sn) cool heat Eutectoid –all solid phases S S1+S3 ϒ α+ Fe3C (For Fe-C, 727ºC, 0.76 wt% C) intermetallic compound - cementite cool heat Peritectic - liquid and one solid phase transform to a second solid phase S1 + L S2 δ + L ϒ (For Fe-C, 1493ºC, 0.16 wt% C) cool heat Peritectoid – all solid phases S1 + S S3
22
Eutectoid & Peritectic
Cu-Zn Phase diagram Peritectic transformation γ + L δ Eutectoid transformation δ γ + ε
23
Iron-Carbon (Fe-C) Phase Diagram
Fe3C (cementite) 1600 1400 1200 1000 800 600 400 1 2 3 4 5 6 6.7 L γ (austenite) +L +Fe3C α + δ (Fe) wt% C 1148ºC T(ºC) 727ºC = T eutectoid - Eutectic (A): L → γ + Fe3C A L+Fe3C - Eutectoid (B): γ → α + Fe3C γ Result: Pearlite = alternating layers of α and Fe3C phases 120 mm 0.76 B Fe3C (cementite-hard) α (ferrite-soft) 4.30
24
Hypereutectoid Steel a T(ºC) δ L +L γ γ (austenite) γ γ α
1600 1400 1200 1000 800 600 400 1 2 3 4 5 6 6.7 L γ (austenite) +L +Fe3C α L+Fe3C δ (Fe) C, wt%C 1148ºC T(ºC) a proeutectoid Fe3C γ γ Fe3C γ pearlite 60 μm pearlite C0 0.76
25
Hypoeutectoid Steel T(ºC) δ L +L γ (austenite) pearlite
1600 1400 1200 1000 800 600 400 1 2 3 4 5 6 6.7 L γ (austenite) +L + Fe3C α L+Fe3C δ (Fe) C, wt% C 1148ºC T(ºC) 727ºC C0 0.76 γ 100 μm pearlite γ α proeutectoid ferrite α pearlite For a 99.6 wt% Fe-0.40 wt% C steel at a temperature just below the eutectoid, determine the following: The compositions of Fe3C and ferrite (α). The amount of cementite (in grams) that forms in 100 g of steel. The amounts of pearlite and proeutectoid ferrite (α) in the 100 g.
26
Solution to Example Problem
The compositions of Fe3C and ferrite (α). RS tie line just below the eutectoid Cα = wt% C CFe3C = 6.70 wt% C pearlite Wight Fraction of cementite Fe3C (cementite) 1600 1400 1200 1000 800 600 400 1 2 3 4 5 6 6.7 L γ (austenite) +L + Fe3C α L+Fe3C δ C , wt% C 1148ºC T(ºC) 727ºC C0 R S CFe C 3 Cα Amount of Fe3C in 100 g = (100 g)WFe3C = (100 g)(0.057) = 5.7 g
27
The amounts of pearlite in the 100 g.
c) Using the VX tie line just above the eutectoid and realizing that C0 = 0.40 wt% C Cα = wt% C Cpearlite = Cγ = 0.76 wt% C α pearlite Fe3C (cementite) 1600 1400 1200 1000 800 600 400 1 2 3 4 5 6 6.7 L γ (austenite) +L + Fe3C α L+Fe3C δ C, wt% C 1148ºC T(ºC) 727ºC C0 V X Cγ Cα Amount of pearlite in 100 g = (100 g)Wpearlite = (100 g)(0.512) = 51.2 g
28
Alloying with Other Elements
• Teutectoid changes: T Eutectoid (ºC) wt. % of alloying elements Ti Ni Mo Si W Cr Mn • Ceutectoid changes: wt. % of alloying elements C eutectoid (wt% C) Ni Ti Cr Si Mn W Mo
29
VMSE: Interactive Phase Diagrams
Microstructure, phase compositions, and phase fractions respond interactively Change alloy composition
30
Summary • Phase diagrams are useful tools to determine:
-- the number and types of phases present, -- the composition of each phase, -- and the weight fraction of each phase given the temperature and composition of the system. • The microstructure of an alloy depends on -- its composition, and -- whether or not cooling rate allows for maintenance of equilibrium. • Important phase diagram phase transformations include eutectic, eutectoid, and peritectic.
32
Effect of Temperature & Composition
• Altering T can change # of phases: path A to B. Altering C can change # of phases: path B to D. B (100ºC,C = 70) 1 phase D (100ºC,C = 90) 2 phases 70 80 100 60 40 20 Temperature (ºC) C = Composition (wt% sugar) L ( liquid solution i.e., syrup) (liquid) + S (solid sugar) A (20ºC,C = 70) 2 phases
33
EX 1: Pb-Sn Eutectic System
• For a 40 wt% Sn-60 wt% Pb alloy at 150ºC Cα = 11 wt% Sn Pb-Snsystem L + α β 200 T(ºC) 18.3 wt% Sn 20 60 80 100 300 L (liquid) 183ºC 61.9 97.8 Cβ = 99 wt% Sn -- the relative amount of each phase 150 R S 11 Cα 40 C0 99 Cβ W α = Cβ - C0 Cβ - Cα 59 88 = 0.67 S R+S W β = C0 - Cα Cβ - Cα R R+S 29 88 = 0.33
34
EX 2: Pb-Sn Eutectic System
• For a 40 wt% Sn-60 wt% Pb alloy at 220ºC L + β a b 200 T(ºC) wt% Sn 20 60 80 100 300 α 183ºC Ca = 17 wt% Sn CL = 46 wt% Sn 220 17 Cα R 40 C0 S 46 CL the relative amount of each phase W a = CL - C0 CL - Cα 6 29 = 0.21 WL = C0 - Cα CL - Cα 23 29 = 0.79
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.