Presentation is loading. Please wait.

Presentation is loading. Please wait.

Unit 4 Proteins Transcription (DNA to mRNA) Translation (mRNA to tRNA to proteins) Gene expression/regulation (turning genes on and off) Viruses 1.

Similar presentations


Presentation on theme: "Unit 4 Proteins Transcription (DNA to mRNA) Translation (mRNA to tRNA to proteins) Gene expression/regulation (turning genes on and off) Viruses 1."— Presentation transcript:

1 Unit 4 Proteins Transcription (DNA to mRNA) Translation (mRNA to tRNA to proteins) Gene expression/regulation (turning genes on and off) Viruses 1

2 Today’s Exit Ticket The final product of transcription is mRNA. The template used for transcription is DNA. The first step of the process is called initiation and involves transcription factors binding to the promoter region. This allows RNA polymerase to bind to the DNA and begin transcribing, in a process called elongation. During that process, the enzyme reads from the 3’ to 5’ direction and builds the new strand from 5’ to 3’. The last step of transcription is called termination. In eukaryotes, there is another step before translation. This is called RNA processing and involves removing introns and adding a 5’ cap and 3’ poly-A tail. 2

3 Unit 4 Proteins Transcription (DNA to mRNA) Translation (mRNA to tRNA to proteins) Gene expression/regulation (turning genes on and off) Viruses 3

4 Today’s Agenda Transcription practice Translation in detail Mutations 4

5 The template strand of a given gene includes the sequence 3′-G C C A C G T A T C A G-5′. – What is the sequence of the non-template strand? 5’– C G G T G C A T A G T C – 3’ – What is the mRNA sequence made? 5’– C G G U G C A U A G U C – 3’ For each one, be sure to indicate 5 ′ and 3 ′ ends. 5

6 The template strand of a given gene includes the sequence 3′-G C C A C G T A T C A G-5′. What is the amino acid sequence produced from this DNA? Arg-Cys-Ile-Val Non-template strand: 5’– C G G T G C A T A G T C – 3’ mRNA sequence: 5’– C G G U G C A U A G U C – 3’ 6

7 Today’s Agenda Transcription practice Translation in detail Mutations 7

8 Transcription vs. Translation DNA RNAProteins Transcription: Like copying info from a book in the reserved section of the library Using the same language Translation: Literally translating between two different languages Take the copied info from the library and translate it into French/Spanish/Mandarin สวัสดีครับ Hello Hullo 8

9 Translation The major players in translation U U U U G G G GC 9

10 Translation Translation: The structure of tRNA The ribosome i.initiate ii.elongate iii.terminate 10

11 11

12 Translation a) tRNA For accurate translation, the tRNA HAS to have the right amino acid! 1 20 different synthetases  20 different amino acids 12

13 Translation a) tRNA 2 3 13

14 Translation a) tRNA 4 14

15 Translation Translation: The structure of tRNA The ribosome i.initiate ii.elongate iii.terminate 15

16 Translation a)The ribosome  What is a ribosome? Made of proteins and rRNA (ribosomal RNA)  Where are ribosomes? A.In the nucleus B.Loose in the cytoplasm C.On the Golgi body D.On the ER E.More than one of the above is correct 16

17 All those RNA molecules… RNA = ribonucleic acid pre-mRNA = the RNA transcript produced initially during transcription in eukaryotes mRNA = messenger RNA = the (processed) RNA transcript molecule that will actually be translated tRNA = transfer RNA = the RNA molecule that brings amino acids to the ribosome rRNA = ribosomal RNA = RNA that forms the structure of the ribosome 17

18 Translation b) the ribosome a)The ribosome  What does it do? Serves as the site of matching mRNA codons with tRNA anticodons Catalyzes formation of peptide bonds to form proteins 18

19 Translation b) the ribosome Next amino acid to be added to polypeptide chain Growing polypeptide 19

20 Translation Translation: The structure of tRNA The ribosome i.initiate ii.elongate iii.terminate 20

21 5. Translation (i) Initiation of translation Small ribosomal subunit binds mRNA. Scans for start codon (sets reading frame). Initiator tRNA binds to start codon. U A G 21

22 Translation b) the ribosome: initiation  Final step of initiation: large ribosomal subunit binds. U A G 22

23 Translation Translation: The structure of tRNA The ribosome i.initiate ii.elongate iii.terminate 23

24 E, P, and A sites A site: where new aminoacyl tRNAs enter P site: – Location of peptidyl tRNA – Where peptide bonds are made E site: Exit site 24

25 Elongation 25

26 Also, don’t forgetHank’s crash course on gene expression!gene expression Termination One more good video: http://www.dnalc.org/resources/3d/16-translation-advanced.html 26

27 USE THE GENETIC CODE TABLE TO TRANSLATE 5 DIFFERENT CODONS into AMINO ACIDS: RNA: 5’ CGC 3’ = ___________ 5’ UAU 3’ = ___________ NOTE: technically “Codon” refers to the 3 letters in the mRNA that are translated. 27

28 USE THE GENETIC CODE TABLE TO TRANSLATE 5 DIFFERENT CODONS into AMINO ACIDS: RNA: 5’ CGC 3’ = ___ Arg ___ 5’ UAU 3’ = ___ Tyr ___ NOTE: technically “Codon” refers to the 3 letters in the mRNA that are translated. 28

29 USE THE GENETIC CODE TABLE TO TRANSLATE 5 DIFFERENT CODONS into AMINO ACIDS: DNA (template strand): 3’ TTG 5’ = ___________ 3’ ACT 5’ = ___________ NOTE: technically “Codon” refers to the 3 letters in the mRNA that are translated. 29

30 USE THE GENETIC CODE TABLE TO TRANSLATE 5 DIFFERENT CODONS into AMINO ACIDS: DNA (template strand): 3’ TTG 5’ RNA 5’ AAC 3’ = Asn DNA 3’ ACT 5’ RNA5’ UGA 3’ = Stop NOTE: technically “Codon” refers to the 3 letters in the mRNA that are translated. 30

31 USE THE GENETIC CODE TABLE TO TRANSLATE 5 DIFFERENT CODONS into AMINO ACIDS: Brain twister: DNA NON-template strand: 5’ ATG 3’ = __________ NOTE: technically “Codon” refers to the 3 letters in the mRNA that are translated. 31

32 USE THE GENETIC CODE TABLE TO TRANSLATE 5 DIFFERENT CODONS into AMINO ACIDS: Brain twister: DNA NON-template strand: 5’ ATG 3’ = _______ DNA template strand = 3’ TAC 5’ = RNA 5’ AUG 3’ = Met (start) NOTE: technically “Codon” refers to the 3 letters in the mRNA that are translated. 32

33 Mutations in protein coding DNA sequences (exons) can alter protein structure and function in several ways. How DNA mutations can alter proteins Fanpop.com 33

34 5) Mutations in protein coding DNA sequences (exons) can alter protein structure and function in several ways. a) Substitution - Switching one nucleotide for another b) Insertion/deletion- Adding or removing a nucleotide  can create a frameshift 5) How DNA mutations can alter proteins 34

35 a) Substitution - Switching one nucleotide for another can cause different amino acid to be attached. 5) How DNA mutations can alter proteins A U G A A G U U U G G C U A A A U G A A G U U U A G C U A A 35

36 a) Substitution- Switching one nucleotide for another can cause NO CHANGE in the protein. How? 5) How DNA mutations can alter proteins A U G A A G U U U G G C U A A 36

37 a) Substitution- Switching one nucleotide for another can cause NO CHANGE in the protein. How? 5) How DNA mutations can alter proteins A U G A A G U U U G G C U A A 37

38 b) Insertions or Deletions - Inserting an extra nucleotide, or deleting a nucleotide causes a frameshift. 5) How DNA mutations can alter proteins A U G A A G U U U G G C U A A A U G U A A G U U U G G C U A A 38

39 b) Insertions or Deletions - Inserting an extra nucleotide, or deleting a nucleotide causes a frameshift. 5) How DNA mutations can alter proteins A U G A A G U U G G C U A A A U G A A G U U U G G C U A A U 39

40 b) Insertions or Deletions - Inserting an extra nucleotide, or deleting a nucleotide causes a frameshift. 5) How DNA mutations can alter proteins 40

41 c) Gene duplications: a duplicate copy of an exon or whole gene is created in the genome  this is largely how NEW proteins arise in evolution: once a gene has been duplicated, one copy can evolve, while the other one maintains the original function. 5) How DNA mutations can alter proteins Gene DNAExon 1Exon 2 Exon 3 Intron mRNA Exon 1Exon 2 Exon 3 41

42 Today’s Exit Ticket Template DNA__’CGAG Non-Template__’TTAA mRNA5’AUGA3’ 1)Fill in the blanks in the DNA/RNA chart below. 1)What is the amino acid sequence corresponding to the DNA and RNA sequences below? 42


Download ppt "Unit 4 Proteins Transcription (DNA to mRNA) Translation (mRNA to tRNA to proteins) Gene expression/regulation (turning genes on and off) Viruses 1."

Similar presentations


Ads by Google