Presentation is loading. Please wait.

Presentation is loading. Please wait.

Viruses, Viroids, and Prions

Similar presentations


Presentation on theme: "Viruses, Viroids, and Prions"— Presentation transcript:

1 Viruses, Viroids, and Prions
Chapter 13 Viruses, Viroids, and Prions

2 Viruses Viroids Prions an ultramicroscopic - 20 to 300 nm in diameter
replicates only within the cells of living hosts (bacteria, plants, and animals) composed of an RNA or DNA core, a protein coat, and, in more complex types, a surrounding envelope. Viroids consists solely of a strand of RNA smaller than a virus an infectious particle - capable of causing disease Prions an infectious protein particle similar to a virus but lacking nucleic acid;

3 Viruses Acellular Viral size is ascertained by electron microscopy
Consist of DNA or RNA core Core is surrounded by a protein coat Coat may be enclosed in a lipid envelope Reproduction – use host resources Viruses are replicated only when they are in a living host cell Obligate cellular parasite Figure 1.1e

4 Virus structure Virion - a fully assembled infectious virus
1. Core- Nucleic acid – viral genome Single- or double-stranded RNA or DNA Encodes for only a few structural proteins (Capsid proteins ) Non-structural regulatory proteins involved in virus replication 2. Protein coat - capsid Single or double protein shells Consist of only one or a few structural protein species Capsomer - The single protein unit Multiple protein copies must self assemble to form the continuous three-dimensional capsid structure. Shell Function Protect the viral genome from nucleases. Attaches the virion to specific receptors exposed on the prospective host cell during infection.

5 Virus structure 3. Envelope
Some virus families have an additional lipid bilayer cover closely surrounding the shell of the virus It is usually derived in part from modified host cell membranes. Virus-encoded membrane-associated proteins The exterior of the bilayer is studded with virus-coded glycosylated trans- membrane proteins (glycoproteins) Spikes or knobs, also called peplomers.

6 Virus structure Helical viruses
The protein subunits and the nucleic acid are arranged in a helix. Polyhedral viruses The protein subunits assemble into a symmetric shell that covers the nucleic acid-containing core. Complex Viruses Often have architecture consisting of both helical and polyhedral parts confined to different structural components

7 Viruses reproduction The main function of the virion is to deliver its DNA or RNA genome into the host cell so that the genome can be expressed (transcribed and translated) by the host cell. For propagation viruses depend on specialized host cells supplying the complex metabolic and biosynthetic machinery of eukaryotic or prokaryotic cells. Host range is determined by specific host attachment sites and cellular factors Most viruses infect only one host Viruses may be viewed as mobile genetic elements, most probably of cellular origin and characterized by a long co-evolution of virus and host.

8 Viral Taxonomy Family names end in -viridae Genus names end in -virus
Viral species: A group of viruses sharing the same genetic information (DNA or RNA) and ecological niche (host). Common names are used for species Subspecies are designated by a number Example: Herpesviridae Herpesvirus Human herpes virus HHV-1, HHV-2, HHV-3 Retroviridae Lentivirus Human immunodeficiency virus HIV-1, HIV-2

9 The most important taxonomic criteria
Genome Type Particle Morphology – symmetry and viral core structure, envelope. Host organism(s) - Hosts of viruses include all classes of cellular organisms described to date.

10 Genomic diversity among viruses
Nucleic acid DNA RNA (RNA viruses, comprising 70% of all viruses, vary remarkably in genome structure.) Because of the error rate of the enzymes involved in RNA replication, these viruses usually show much higher mutation rates than do the DNA viruses. Mutation rates of 10-4 lead to the continuous generation of virus variants which show great adaptability to new hosts Both DNA and RNA (at different stages in the life cycle) Shape Linear (adenoviruses ) Circular (polyomaviruses ) Segmented (some RNA viruses ) Strandedness Single-stranded Double-stranded Double-stranded with regions of single-strandedness (Hepadnaviridae) Sense Positive sense (+) Negative sense (antisense) Ambisense (+/−)

11 Schemes of 21 virus families infecting humans showing a number of distinctive criteria:
an envelope or (double-) capsid nucleic acid genome: +, Sense strand; -, antisense strand; ±, dsRNA or DNA; 0, circular DNA; C, number of capsomers, where known; nm, dimensions of capsid, or envelope when present;

12 Multiplication of Bacteriophages
Bacteriophage – bacterial viruses – complex viruses Lytic cycle Phage causes lysis and death of host cell Lysogenic cycle Prophage DNA incorporated in host DNA

13 Multiplication of Bacteriophages (Lytic cycle)
1. Attachment 2. Penetration 3. Biosynthesis 4. Maturation 5. Release

14 Multiplication of Bacteriophages (Lysogenic Cycle)
Figure 13.12

15 Generalized Transduction Specialized Transduction
2 3 4 5 6 Figure 8.28

16 Multiplication of Animal viruses
Attachment Penetration Uncoating # by endocytosis by viral or host enzymes # by fusion Figure 13.14a

17 Multiplication of Animal viruses
4. Biosynthesis - Production of nucleic acid and proteins (In nucleus (DNA viruses) or cytoplasm (RNA viruses) 5. Maturation - Nucleic acid and capsid proteins assemble 6. Release - By rupture - By budding (enveloped viruses)

18 Multiplication of DNA-Containing Virus
1.Viral DNA is replicated in the host nucleus 2.Viral proteins are made in the cytoplasm 3. Viral assemble into virions in the nucleus 4. The virions are then transported through the host ER for release *Viral DNA is usually, but not always, integrated into the cell chromosomes at random sites. Only part of the viral genome is expressed *The family of Papovaviridae is not longer used in recent taxonomy, but is split into the Papillomaviridae and the Polyomaviridae.

19 Multiplication of RNA-Containing Viruses
Both the viral RNA and proteins are synthesized in the cytoplasm RNA dependent RNA polymerase -Virions assemble in the cytoplasm Figure 13.17

20 Multiplication of Retroviruses
RNA +strand Reverse transcription Synthesis of dsDNA Transport to the nuclei Integrates in the host genome –Provirus DNA The provirus can then remain latent Transcription activation Genome, or the genes can be expressed to create virions Assembly Release Figure Overview

21 Virus Families That Affect Humans
Single-stranded DNA, nonenveloped viruses Parvoviridae - Anemia in immunocompromised patients Double-stranded DNA, nonenveloped viruses Adenoviridae - Respiratory infections in humans, tumors in animals Papovaviridae Papillomavirus - Human wart virus Polyomavirus - Cause tumors; some cause cancer - Double-stranded DNA, enveloped viruses Poxviridae Orthopoxvirus (vaccinia and smallpox viruses) Herpesviridae Simplexvirus (HHV-1 and HHV-2) Varicellovirus (HHV-3) Lymphocryptovirus (HHV-4) Cytomegalovirus (HHV-5) Roseolovirus (HHV-6) HHV-7 Kaposi's sarcoma (HHV-8) Some herpesviruses can remain latent in host cells Hepadnaviridae Hepatitis B virus DNA single strand Blood borne pathogen

22 Virus Families That Affect Humans
Single-stranded RNA, + strand, nonenveloped Picornaviridae - enterovirus Hepatitis A virus Single-stranded RNA, + strand, enveloped Togaviridae Rubivirus (rubella virus) Flaviviridae West Nile viruses, Hepatitis C virus Single-stranded RNA, – strand, one RNA strand Rhabdoviridae Lyssavirus (rabies virus) Filoviridae Ebola and Marburg viruses Paramyxoviridae Morbilli virus, Parainfluenza,Mumps Single-stranded RNA, – strand, multiple RNA strands Orthomyxoviridae - Envelope spikes can agglutinate RBCs Influenzavirus (influenza viruses A and B) Influenza C virus

23 Avian Influenza (Lectin) Clinical Focus, p. 371

24 Virus Families That Affect Humans
Single stranded RNA, 2 RNA strands, produce DNA Retroviridae Use reverse transcriptase to produce DNA from viral genome Lentivirus (HIV) Oncogenic viruses Includes all RNA tumor viruses

25 Cancer Tumor is a general term used to describe the uncontrollable growth of cells. Tumors can be Benign Malignant (cancerous) An oncogene is a gene that, when mutated or expressed at high levels, helps turn a normal cell into a cancer cell Activated oncogenes transform normal cells into cancerous cells: increased growth loss of contact inhibition tumor specific transplant and T antigens. A proto-oncogene is a normal gene that can become an oncogene Proto-oncogenes code for proteins that help to regulate cell growth and differentiation. The region of the viral genome that can cause a tumor (DNA in DNA tumor-viruses or RNA in RNA-tumor viruses). This foreign gene can be carried into a cell by the virus and cause the host cell to take on new properties.

26 Oncogenic Viruses Oncogenic DNA Viruses Adenoviridae Herpesviridae
Poxviridae Papovaviridae Hepadnaviridae Oncogenic RNA viruses Retroviridae Viral RNA is transcribed to DNA which can integrate into host DNA Examples: 1. EBV > Nasopharyngeal cancer 2. RNA virus -----> breast cancer 3. Genital Herpes > cervical cancer 4. Genital warts -----> cervical cancer (specifically HPV-16) 5. unknown virus > cervical cancer carried in sperm

27 Viral infection Acute Infection Latent Viral Infections
During an acute infection, the virus essentially hijacks the cellular machinery Influenza virus infection. Latent Viral Infections After infection the viral genome is replicated in conjunction with host DNA; expression of viral genes is absent or inefficient; the viral genome remains intact an acute infection may occur at a later time. Herpes virus - Cold sores, shingles Persistent Viral Infections Involve stages of both silent and productive infection without rapidly killing or even producing excessive damage of the host cells. Disease processes occurs over a long period, generally fatal- Subacute sclerosing panencephalitis (measles virus)

28 Growing Viruses - Viruses must be grown in living cells.
Bacteriophages form plaques on a lawn of bacteria. Animal viruses may be grown in living animals or in embryonated eggs. Animal and plants viruses may be grown in cell culture. Continuous cell lines may be maintained indefinitely. Figure 13.6

29 Virus Identification Cytopathic effects Serological tests
Detect antibodies against viruses in a patient Use antibodies to identify viruses in neutralization tests, viral hemagglutination, and Western blot Nucleic acids RFLPs - A Restriction Fragment Length Polymorphism (or RFLP, often pronounced as "rif-lip") is a variation in the DNA sequence of a genome which can be detected by a laboratory technique. PCR

30 Plant viruses enter through wounds or via insects Viroids
Viroids are infectious peaces of RNA; potato spindle tuber disease Figure 13.22

31 Prions Prion (protein-infection) is an infectious agent composed only of protein in a misfolded form. Inherited and transmissible by ingestion, transplant, & surgical instruments Spongiform encephalopathies because of the post mortem appearance of the brain with large vacuoles in the cortex and cerebellum Sheep scrapie Creutzfeldt-Jakob disease Gerstmann-Sträussler-Scheinker syndrome Fatal familial insomnia Mad cow disease

32 Prions Prions propagate by transmitting a misfolded protein state. When a prion enters a healthy organism, it induces existing, properly folded proteins to convert into the disease-associated, prion form; the prion acts as a template to guide the misfolding of more protein into prion form.

33 Learning objectives Differentiate a virus from a bacterium.
Describe the chemical composition and physical structure of an enveloped and a nonenveloped virus. Define viral species. Give an example of a family, genus, and common name for a virus. Describe the lytic cycle of bacteriophages. Describe the lysogenic cycle of bacteriophage lambda. Compare and contrast the multiplication cycle of DNA- and RNA-containing animal viruses. Define oncogene and transformed cell. Discuss the relationship between DNA- and RNA-containing viruses and cancer. Differentiate between persistent viral infections and latent viral infections. Describe how bacteriophages are cultured. Describe how animal viruses are cultured. List three techniques that are used to identify viruses. Discuss how a protein can be infectious. Differentiate virus, viroid, and prion.


Download ppt "Viruses, Viroids, and Prions"

Similar presentations


Ads by Google