Download presentation
Presentation is loading. Please wait.
Published byGervais Gardner Modified over 9 years ago
1
1 1 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. SLIDES. BY John Loucks St. Edward’s University......................
2
2 2 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Chapter 13 Multiple Regression n Multiple Regression Model n Least Squares Method n Multiple Coefficient of Determination n Model Assumptions n Testing for Significance n Using the Estimated Regression Equation for Estimation and Prediction for Estimation and Prediction n Categorical Independent Variables
3
3 3 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. n In this chapter we continue our study of regression analysis by considering situations involving two or more independent variables. Multiple Regression n This subject area, called multiple regression analysis, enables us to consider more factors and thus obtain better estimates than are possible with simple linear regression.
4
4 4 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. The equation that describes how the dependent variable y is related to the independent variables x 1, x 2,... x p and an error term is: The equation that describes how the dependent variable y is related to the independent variables x 1, x 2,... x p and an error term is: Multiple Regression Model y = 0 + 1 x 1 + 2 x 2 +... + p x p + where: 0, 1, 2,..., p are the parameters, and is a random variable called the error term n Multiple Regression Model
5
5 5 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. The equation that describes how the mean value of y is related to x 1, x 2,... x p is: The equation that describes how the mean value of y is related to x 1, x 2,... x p is: Multiple Regression Equation E ( y ) = 0 + 1 x 1 + 2 x 2 +... + p x p n Multiple Regression Equation
6
6 6 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. A simple random sample is used to compute sample statistics b 0, b 1, b 2,..., b p that are used as the point estimators of the parameters 0, 1, 2,..., p. Estimated Multiple Regression Equation ^ y = b 0 + b 1 x 1 + b 2 x 2 +... + b p x p Estimated Multiple Regression Equation Estimated Multiple Regression Equation
7
7 7 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Estimation Process Multiple Regression Model E ( y ) = 0 + 1 x 1 + 2 x 2 +...+ p x p + Multiple Regression Equation E ( y ) = 0 + 1 x 1 + 2 x 2 +...+ p x p Unknown parameters are 0, 1, 2,..., p Sample Data: x 1 x 2... x p y.... Estimated Multiple Regression Equation Sample statistics are b 0, b 1, b 2,..., b p b 0, b 1, b 2,..., b p b 0, b 1, b 2,..., b p provide estimates of 0, 1, 2,..., p
8
8 8 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Least Squares Method n Least Squares Criterion n Computation of Coefficient Values The formulas for the regression coefficients The formulas for the regression coefficients b 0, b 1, b 2,... b p involve the use of matrix algebra. We will rely on computer software packages to perform the calculations. The emphasis will be on how to interpret the computer output.
9
9 9 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. The years of experience, score on the aptitude test test, and corresponding annual salary ($1000s) for a sample of 20 programmers is shown on the next slide. n Example: Programmer Salary Survey Multiple Regression Model A software firm collected data for a sample of 20 A software firm collected data for a sample of 20 computer programmers. A suggestion was made that regression analysis could be used to determine if salary was related to the years of experience and the score on the firm’s programmer aptitude test.
10
10 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. 471581001669210568463378100868286847580839188737581748779947089 24.043.023.734.335.838.022.223.130.033.0 38.026.636.231.629.034.030.133.928.230.0 Exper.(Yrs.) TestScore TestScore Exper.(Yrs.) Salary($1000s) Salary($1000s) Multiple Regression Model
11
11 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Suppose we believe that salary ( y ) is related to Suppose we believe that salary ( y ) is related to the years of experience ( x 1 ) and the score on the programmer aptitude test ( x 2 ) by the following regression model: Multiple Regression Model where y = annual salary ($1000s) y = annual salary ($1000s) x 1 = years of experience x 1 = years of experience x 2 = score on programmer aptitude test x 2 = score on programmer aptitude test y = 0 + 1 x 1 + 2 x 2 +
12
12 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Solving for the Estimates of 0, 1, 2 Input Data Least Squares Output x 1 x 2 y 4 78 24 4 78 24 7 100 43 7 100 43...... 3 89 30 3 89 30 ComputerPackage for Solving MultipleRegressionProblems b 0 = b 0 = b 1 = b 2 = R 2 = etc.
13
13 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. n Regression Equation Output Solving for the Estimates of 0, 1, 2 CoefSE CoefT p Constant3.173946.156070.51560.61279 EXPER1.40390.198577.07021.9E-06 SCORE0.250890.077353.24330.00478 Predictor
14
14 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Estimated Regression Equation SALARY = 3.174 + 1.404(EXPER) + 0.251(SCORE) Note: Predicted salary will be in thousands of dollars.
15
15 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Interpreting the Coefficients In multiple regression analysis, we interpret each In multiple regression analysis, we interpret each regression coefficient as follows: regression coefficient as follows: b i represents an estimate of the change in y b i represents an estimate of the change in y corresponding to a 1-unit increase in x i when all corresponding to a 1-unit increase in x i when all other independent variables are held constant. other independent variables are held constant.
16
16 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Salary is expected to increase by $1,404 for Salary is expected to increase by $1,404 for each additional year of experience (when the variable score on programmer attitude test is held constant). b 1 = 1.404 Interpreting the Coefficients
17
17 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Salary is expected to increase by $251 for each Salary is expected to increase by $251 for each additional point scored on the programmer aptitude additional point scored on the programmer aptitude test (when the variable years of experience is held constant). b 2 = 0.251 Interpreting the Coefficients
18
18 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Multiple Coefficient of Determination n Relationship Among SST, SSR, SSE where: SST = total sum of squares SST = total sum of squares SSR = sum of squares due to regression SSR = sum of squares due to regression SSE = sum of squares due to error SSE = sum of squares due to error SST = SSR + SSE = +
19
19 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. n ANOVA Output Multiple Coefficient of Determination Analysis of Variance DFSSMSFP Regression 2500.3285250.16442.760.000 Residual Error1799.456975.850 Total19599.7855 SOURCE SSTSST SSRSSR
20
20 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Multiple Coefficient of Determination R 2 = 500.3285/599.7855 =.83418 R 2 = SSR/SST
21
21 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Adjusted Multiple Coefficient of Determination n Adding independent variables, even ones that are not statistically significant, causes the prediction errors to become smaller, thus reducing the sum of squares due to error, SSE. n Because SSR = SST – SSE, when SSE becomes smaller, SSR becomes larger, causing R 2 = SSR/SST to increase. n The adjusted multiple coefficient of determination compensates for the number of independent variables in the model.
22
22 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Adjusted Multiple Coefficient of Determination 81.5% of the variability in programmer salary is explained by the estimated multiple regression equation with years of experience and test score as the independent variables. 81.5% of the variability in programmer salary is explained by the estimated multiple regression equation with years of experience and test score as the independent variables.
23
23 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. The variance of , denoted by 2, is the same for all The variance of , denoted by 2, is the same for all values of the independent variables. values of the independent variables. The variance of , denoted by 2, is the same for all The variance of , denoted by 2, is the same for all values of the independent variables. values of the independent variables. The error is a normally distributed random variable The error is a normally distributed random variable reflecting the deviation between the y value and the reflecting the deviation between the y value and the expected value of y given by 0 + 1 x 1 + 2 x 2 +.. + p x p. expected value of y given by 0 + 1 x 1 + 2 x 2 +.. + p x p. The error is a normally distributed random variable The error is a normally distributed random variable reflecting the deviation between the y value and the reflecting the deviation between the y value and the expected value of y given by 0 + 1 x 1 + 2 x 2 +.. + p x p. expected value of y given by 0 + 1 x 1 + 2 x 2 +.. + p x p. Assumptions About the Error Term The error is a random variable with mean of zero. The error is a random variable with mean of zero. The values of are independent. The values of are independent.
24
24 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. In simple linear regression, the F and t tests provide In simple linear regression, the F and t tests provide the same conclusion. the same conclusion. In simple linear regression, the F and t tests provide In simple linear regression, the F and t tests provide the same conclusion. the same conclusion. Testing for Significance In multiple regression, the F and t tests have different In multiple regression, the F and t tests have different purposes. purposes. In multiple regression, the F and t tests have different In multiple regression, the F and t tests have different purposes. purposes.
25
25 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Testing for Significance: F Test The F test is referred to as the test for overall The F test is referred to as the test for overall significance. significance. The F test is referred to as the test for overall The F test is referred to as the test for overall significance. significance. The F test is used to determine whether a significant The F test is used to determine whether a significant relationship exists between the dependent variable relationship exists between the dependent variable and the set of all the independent variables. and the set of all the independent variables. The F test is used to determine whether a significant The F test is used to determine whether a significant relationship exists between the dependent variable relationship exists between the dependent variable and the set of all the independent variables. and the set of all the independent variables.
26
26 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. A separate t test is conducted for each of the A separate t test is conducted for each of the independent variables in the model. independent variables in the model. A separate t test is conducted for each of the A separate t test is conducted for each of the independent variables in the model. independent variables in the model. If the F test shows an overall significance, the t test is If the F test shows an overall significance, the t test is used to determine whether each of the individual used to determine whether each of the individual independent variables is significant. independent variables is significant. If the F test shows an overall significance, the t test is If the F test shows an overall significance, the t test is used to determine whether each of the individual used to determine whether each of the individual independent variables is significant. independent variables is significant. Testing for Significance: t Test We refer to each of these t tests as a test for individual We refer to each of these t tests as a test for individual significance. significance. We refer to each of these t tests as a test for individual We refer to each of these t tests as a test for individual significance. significance.
27
27 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Testing for Significance: F Test HypothesesHypotheses Rejection Rule Test Statistic H 0 : 1 = 2 =... = p = 0 H 0 : 1 = 2 =... = p = 0 H a : One or more of the parameters H a : One or more of the parameters is not equal to zero. is not equal to zero. F = MSR/MSE Reject H 0 if p -value F where F is based on an F distribution with p d.f. in the numerator and n - p - 1 d.f. in the denominator.
28
28 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. F Test for Overall Significance HypothesesHypotheses H 0 : 1 = 2 = 0 H 0 : 1 = 2 = 0 H a : One or both of the parameters H a : One or both of the parameters is not equal to zero. is not equal to zero. Rejection Rule For =.05 and d.f. = 2, 17; F.05 = 3.59 Reject H 0 if p -value 3.59
29
29 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. n ANOVA Output F Test for Overall Significance Analysis of Variance DFSSMSFP Regression 2500.3285250.16442.760.000 Residual Error1799.456975.850 Total19599.7855 SOURCE p -value used to test for overall significance overall significance p -value used to test for overall significance overall significance
30
30 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. F Test for Overall Significance Test Statistic F = MSR/MSE = 250.16/5.85 = 42.76 = 250.16/5.85 = 42.76 ConclusionConclusion F = 42.76 > 3.59, so we can reject H 0. (Also, p -value <.05)
31
31 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Testing for Significance: t Test HypothesesHypotheses Rejection Rule Test Statistic Reject H 0 if p -value < or if t t where t is based on a t distribution with n - p - 1 degrees of freedom.
32
32 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. t Test for Significance of Individual Parameters HypothesesHypotheses Rejection Rule For =.05 and d.f. = 17, t.025 = 2.11 Reject H 0 if p -value <.05, or if t 2.11 if t 2.11
33
33 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. CoefSE CoefT p Constant3.173946.156070.51560.61279 EXPER1.40390.198577.07021.9E-06 SCORE0.250890.077353.24330.00478 Predictor n Regression Equation Output t Test for Significance of Individual Parameters t statistic and p -value used to test for the individual significance of “EXPER”
34
34 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. t Test for Significance of Individual Parameters Test Statistics ConclusionsConclusions Reject both H 0 : 1 = 0 and H 0 : 2 = 0. Both independent variables are significant.
35
35 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Testing for Significance: Multicollinearity The term multicollinearity refers to the correlation The term multicollinearity refers to the correlation among the independent variables. among the independent variables. The term multicollinearity refers to the correlation The term multicollinearity refers to the correlation among the independent variables. among the independent variables. When the independent variables are highly correlated When the independent variables are highly correlated (say, | r | >.7), it is not possible to determine the (say, | r | >.7), it is not possible to determine the separate effect of any particular independent variable separate effect of any particular independent variable on the dependent variable. on the dependent variable. When the independent variables are highly correlated When the independent variables are highly correlated (say, | r | >.7), it is not possible to determine the (say, | r | >.7), it is not possible to determine the separate effect of any particular independent variable separate effect of any particular independent variable on the dependent variable. on the dependent variable.
36
36 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Testing for Significance: Multicollinearity Every attempt should be made to avoid including Every attempt should be made to avoid including independent variables that are highly correlated. independent variables that are highly correlated. Every attempt should be made to avoid including Every attempt should be made to avoid including independent variables that are highly correlated. independent variables that are highly correlated. If the estimated regression equation is to be used only If the estimated regression equation is to be used only for predictive purposes, multicollinearity is usually for predictive purposes, multicollinearity is usually not a serious problem. not a serious problem. If the estimated regression equation is to be used only If the estimated regression equation is to be used only for predictive purposes, multicollinearity is usually for predictive purposes, multicollinearity is usually not a serious problem. not a serious problem.
37
37 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Using the Estimated Regression Equation for Estimation and Prediction The procedures for estimating the mean value of y The procedures for estimating the mean value of y and predicting an individual value of y in multiple and predicting an individual value of y in multiple regression are similar to those in simple regression. regression are similar to those in simple regression. The procedures for estimating the mean value of y The procedures for estimating the mean value of y and predicting an individual value of y in multiple and predicting an individual value of y in multiple regression are similar to those in simple regression. regression are similar to those in simple regression. We substitute the given values of x 1, x 2,..., x p into We substitute the given values of x 1, x 2,..., x p into the estimated regression equation and use the the estimated regression equation and use the corresponding value of y as the point estimate. corresponding value of y as the point estimate. We substitute the given values of x 1, x 2,..., x p into We substitute the given values of x 1, x 2,..., x p into the estimated regression equation and use the the estimated regression equation and use the corresponding value of y as the point estimate. corresponding value of y as the point estimate.
38
38 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Using the Estimated Regression Equation for Estimation and Prediction Software packages for multiple regression will often Software packages for multiple regression will often provide these interval estimates. provide these interval estimates. Software packages for multiple regression will often Software packages for multiple regression will often provide these interval estimates. provide these interval estimates. The formulas required to develop interval estimates The formulas required to develop interval estimates for the mean value of y and for an individual value for the mean value of y and for an individual value of y are beyond the scope of the textbook. of y are beyond the scope of the textbook. The formulas required to develop interval estimates The formulas required to develop interval estimates for the mean value of y and for an individual value for the mean value of y and for an individual value of y are beyond the scope of the textbook. of y are beyond the scope of the textbook. ^^
39
39 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. In many situations we must work with categorical In many situations we must work with categorical independent variables such as gender (male, female), independent variables such as gender (male, female), method of payment (cash, check, credit card), etc. method of payment (cash, check, credit card), etc. In many situations we must work with categorical In many situations we must work with categorical independent variables such as gender (male, female), independent variables such as gender (male, female), method of payment (cash, check, credit card), etc. method of payment (cash, check, credit card), etc. For example, x 2 might represent gender where x 2 = 0 For example, x 2 might represent gender where x 2 = 0 indicates male and x 2 = 1 indicates female. indicates male and x 2 = 1 indicates female. For example, x 2 might represent gender where x 2 = 0 For example, x 2 might represent gender where x 2 = 0 indicates male and x 2 = 1 indicates female. indicates male and x 2 = 1 indicates female. Categorical Independent Variables In this case, x 2 is called a dummy or indicator variable. In this case, x 2 is called a dummy or indicator variable.
40
40 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. The years of experience, the score on the programmer aptitude test, whether the individual has a relevant graduate degree, and the annual salary ($000) for each of the sampled 20 programmers are shown on the next slide. Categorical Independent Variables n Example: Programmer Salary Survey As an extension of the problem involving the computer programmer salary survey, suppose that management also believes that the annual salary is related to whether the individual has a graduate degree in computer science or information systems.
41
41 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. 471581001669210568463378100868286847580839188737581748779947089 24.043.023.734.335.838.022.223.130.033.0 38.026.636.231.629.034.030.133.928.230.0 Exper.(Yrs.) TestScoreTestScoreExper.(Yrs.)Salary($1000s) Salary($1000s) Deg. No NoYes YesYesYes Yes Deg. Yes Yes No NoYes Yes Yes Categorical Independent Variables
42
42 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Estimated Regression Equation ^where: y = annual salary ($1000) y = annual salary ($1000) x 1 = years of experience x 1 = years of experience x 2 = score on programmer aptitude test x 2 = score on programmer aptitude test x 3 = 0 if individual does not have a graduate degree x 3 = 0 if individual does not have a graduate degree 1 if individual does have a graduate degree 1 if individual does have a graduate degree x 3 is a dummy variable y = b 0 + b 1 x 1 + b 2 x 2 + b 3 x 3 ^
43
43 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. n ANOVA Output Analysis of Variance DFSSMSFP Regression 3507.8960269.29929.480.000 Residual Error1691.88955.743 Total19599.7855 SOURCE Categorical Independent Variables R 2 = 507.896/599.7855 =.8468 Previously, R Square =.8342 Previously, Previously,Adjusted R Square =.815 Previously,Adjusted
44
44 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. CoefSE CoefT p Constant7.9457.3821.0760.298 EXPER1.1480.2983.8560.001 SCORE0.1970.0902.1910.044 Predictor n Regression Equation Output Categorical Independent Variables DEGREE2.2801.9871.1480.268 Not significant
45
45 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. More Complex Categorical Variables If a categorical variable has k levels, k - 1 dummy If a categorical variable has k levels, k - 1 dummy variables are required, with each dummy variable variables are required, with each dummy variable being coded as 0 or 1. being coded as 0 or 1. If a categorical variable has k levels, k - 1 dummy If a categorical variable has k levels, k - 1 dummy variables are required, with each dummy variable variables are required, with each dummy variable being coded as 0 or 1. being coded as 0 or 1. For example, a variable with levels A, B, and C could For example, a variable with levels A, B, and C could be represented by x 1 and x 2 values of (0, 0) for A, (1, 0) be represented by x 1 and x 2 values of (0, 0) for A, (1, 0) for B, and (0,1) for C. for B, and (0,1) for C. For example, a variable with levels A, B, and C could For example, a variable with levels A, B, and C could be represented by x 1 and x 2 values of (0, 0) for A, (1, 0) be represented by x 1 and x 2 values of (0, 0) for A, (1, 0) for B, and (0,1) for C. for B, and (0,1) for C. Care must be taken in defining and interpreting the Care must be taken in defining and interpreting the dummy variables. dummy variables. Care must be taken in defining and interpreting the Care must be taken in defining and interpreting the dummy variables. dummy variables.
46
46 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. For example, a variable indicating level of education could be represented by x 1 and x 2 values as follows: For example, a variable indicating level of education could be represented by x 1 and x 2 values as follows: More Complex Categorical Variables Highest Degree x 1 x 2 Bachelor’s00 Master’s10 Ph.D.01
47
47 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. End of Chapter 13
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.