Download presentation
Presentation is loading. Please wait.
Published byScott Paul Modified over 9 years ago
1
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Chapter 8 Computer Arithmetic
2
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Chapter Outline Unsigned notationsUnsigned notations Signed notationsSigned notations Binary Coded DecimalBinary Coded Decimal Specialized arithmetic hardwareSpecialized arithmetic hardware Floating point numbersFloating point numbers IEEE 754 floating point standardIEEE 754 floating point standard
3
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Unsigned Notations Unsigned non-negativeUnsigned non-negative Unsigned two’s-complementUnsigned two’s-complement
4
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Unsigned Notations Unsigned non-negativeUnsigned non-negative Unsigned two’s-complementUnsigned two’s-complement
5
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Addition: X X + Y
6
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Overflow
7
Subtraction: X X - Y
8
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Overflow
9
Multiplication A non-optimal methodA non-optimal method z = 0 FOR i = 1 TO y DO { z = z + x }
10
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Multiplication A more typical methodA more typical method
11
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Multiplication Calculating running totalsCalculating running totals
12
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Multiplication Shifting partial results to align sumsShifting partial results to align sums
13
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Shift-add Multiplication Algorithm C = 0, U = 0;
14
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Example: UV X Y (X = 1101, Y = 1001) C = 0, U = 0 0
15
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 RTL Code C 0, U 0, i n
16
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Example: UV X Y (X = 1101, Y = 1001) C 0, U 0, i 4 0
17
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Hardware Implementation
18
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Optimizing the RTL Code UV X VUV X V Register Y not neededRegister Y not needed One operand is lostOne operand is lost
19
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Optimizing the RTL Code C 0, U 0
20
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Example C 0, U 0, i 4 0
21
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Booth’s Algorithm Multiplying unsigned 2’s-complement numbersMultiplying unsigned 2’s-complement numbers
22
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Example UV X Y, X = -3 (1101), Y = -5 (1011)UV X Y, X = -3 (1101), Y = -5 (1011)
23
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Example UV X Y, X = -3 (1101), Y = -5 (1011)UV X Y, X = -3 (1101), Y = -5 (1011)
24
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 RTL Code
25
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Example
26
Optimized RTL Code
27
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Hardware Implementation
28
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Division A non-optimal methodA non-optimal method
29
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Division A more typical methodA more typical method
30
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Division Shifting results to align remaindersShifting results to align remainders
31
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Shift-subtract Division Algorithm
32
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Example: UV X (UV = 1001 0011, X = 1101)
33
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 RTL Code
34
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Example
35
Hardware Implementation
36
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Restoring Division Algorithm
37
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Overflow Comparison
38
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Example
39
RTL Code
40
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Example
41
Hardware Implementation
42
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Signed Notations Signed-magnitudeSigned-magnitude
43
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Signed Notations Signed-magnitudeSigned-magnitude Signed-2’s complementSigned-2’s complement
44
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Signed Notations Signed-magnitudeSigned-magnitude Signed-2’s complementSigned-2’s complement Value Signed-magnitude Signed-2’s complement +3 0 0011 0 0011 +3 0 0011 0 0011 -3 1 0011 1 1101 -3 1 0011 1 1101
45
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Addition and Subtraction
46
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 RTL Code
47
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 RTL Code
48
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Examples
49
Examples
50
Examples
51
Hardware Implementation
52
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Multiplication
53
Example
54
Binary Coded Decimal (BCD) Every 4 bits = 1 decimal digitEvery 4 bits = 1 decimal digit 1 bit sign1 bit sign Example: +27 = 0 0010 0111Example: +27 = 0 0010 0111
55
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 BCD Adder
56
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Nine’s Complement Equivalent of 1’s complement in binaryEquivalent of 1’s complement in binary
57
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Nine’s Complement Equivalent of 1’s complement in binaryEquivalent of 1’s complement in binary
58
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 RTL Code
59
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Examples
60
Examples
61
Examples
62
Hardware Implementation
63
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Multiplication dshr: decimal shift rightdshr: decimal shift right
64
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Multiplication dshr: decimal shift rightdshr: decimal shift right
65
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Example
66
Arithmetic Pipelines Increase throughputIncrease throughput
67
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Arithmetic Pipelines Increase throughputIncrease throughput Speedup:Speedup:
68
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Example
69
Example
70
Example
71
Steady State Speedup
72
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Steady State Speedup
73
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Speedup with Latch Delays
74
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Speedup with Latch Delays
75
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Lookup Tables
76
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Example
77
Wallace Trees Carry Save AdderCarry Save Adder
78
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Wallace Trees Carry Save AdderCarry Save Adder
79
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Wallace Trees Partial productsPartial products
80
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Wallace Trees Partial productsPartial products
81
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Example
82
Example
83
4 4 Wallace Tree
84
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 8 8 Wallace Tree
85
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Floating Point Numbers Sign, Significand, ExponentSign, Significand, Exponent Normalized:Normalized: -1234.5678 = -.12345678 10 4 -1234.5678 = -.12345678 10 4 NaNNaN BiasingBiasing
86
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Floating Point Numbers PrecisionPrecision GapGap RangeRange Round, Guard, Sticky bitsRound, Guard, Sticky bits
87
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Rounding Round toward nearestRound toward nearest Round toward 0Round toward 0 Round toward + Round toward + Round toward - Round toward -
88
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Example
89
Addition and Subtraction
90
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Addition and Subtraction
91
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 RTL Code
92
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Example: (.1101 2 3 ) + (.1110 2 2 )
93
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Example: (.1101 2 3 ) - (.1110 2 2 )
94
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Multiplication Check for special valuesCheck for special values Add exponentsAdd exponents Multiply significandsMultiply significands Normalize resultNormalize result
95
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 RTL Code
96
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Example: (.1101 2 3 ) (.1110 2 2 )
97
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 IEEE 754 Floating Point Standard 1 significand < 21 significand < 2 Single of double precisionSingle of double precision
98
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 IEEE 754 Floating Point Standard IEEE 754 Floating Point Standard
99
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 IEEE 754 Floating Point Standard
100
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Denormalized Values Used to express smaller numbers than possible with normalized notationUsed to express smaller numbers than possible with normalized notation Smallest normalized value: 2 -126 (single precision)Smallest normalized value: 2 -126 (single precision) Smallest denormalized value: 2 -149 (single precision)Smallest denormalized value: 2 -149 (single precision)
101
Images courtesy of Addison Wesley Longman, Inc. Copyright © 2001 Summary Unsigned notationsUnsigned notations Signed notationsSigned notations Binary Coded DecimalBinary Coded Decimal Specialized arithmetic hardwareSpecialized arithmetic hardware Floating point numbersFloating point numbers IEEE 754 floating point standardIEEE 754 floating point standard
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.