Download presentation
Published byAnna Stevenson Modified over 9 years ago
1
بلور شناسی سلول واحد (مفاهیم پایه ) انواع شبکه های دو بعدی و سه بعدی
اندیس های میلر
2
تفاوت؟
3
سلول واحد در شبکه دو بعدی
4
سلول واحد در شبکه دو بعدی NaCl
Crystal Structure
5
انتخاب دلخواه سلول واحد(حجم یکسان)
Crystal Structure
6
چینش اتمها در سلول واحد مهم نیست
Crystal Structure
7
- or if you don’t start from an atom
Crystal Structure
8
ایا سلول واحد است؟ Crystal Structure
9
ایا سلول مثلثی سلول واحد است؟
Crystal Structure
10
Crystal Structure
11
پنج شبکه براوه دو بعدی Crystal Structure
12
یک ملکول هر نوع چرخشی را می تواند داشته باشد
اما شبکه؟
13
Crystal Structure
14
1-CUBIC Crystal Structure
15
a- Simple Cubic (SC) Crystal Structure
17
Face Centered Cubic (FCC)
4 اتم در سلول واحدش وجود دارد (Cu,Ni,Pb..etc) ساختار fcc. دارند Crystal Structure
18
3 - Face Centered Cubıc Crystal Structure Atoms are all same.
19
2 - HEXAGONAL SYSTEM سه اتم در سلول واحدش وجود دارد. Crystal Structure
20
2 - HEXAGONAL SYSTEM Crystal Structure Atoms are all same.
21
Crystal Structure
22
3 - TRICLINIC 4 - MONOCLINIC CRYSTAL SYSTEM
تری کلینیک کمترین میزان تقارن را داراست Triclinic (Simple) a ¹ ß ¹ g ¹ 90 oa ¹ b ¹ c Monoclinic (Simple) a = g = 90o, ß ¹ 90o a ¹ b ¹c Monoclinic (Base Centered) a = g = 90o, ß ¹ 90o a ¹ b ¹ c, Crystal Structure
23
5 - ORTHORHOMBIC SYSTEM Orthorhombic (FC) a = ß = g = 90o a ¹ b ¹ c
Orthorhombic (Simple) a = ß = g = 90o a ¹ b ¹ c Orthorhombic (Base-centred) a = ß = g = 90o a ¹ b ¹ c Orthorhombic (BC) a = ß = g = 90o a ¹ b ¹ c Crystal Structure
24
6 – TETRAGONAL SYSTEM Tetragonal (BC) a = ß = g = 90o
Tetragonal (P) a = ß = g = 90o a = b ¹ c Tetragonal (BC) a = ß = g = 90o a = b ¹ c Crystal Structure
25
7 - Rhombohedral (R) or Trigonal
Rhombohedral (R) or Trigonal (S) a = b = c, a = ß = g ¹ 90o Crystal Structure
26
Miller Indices اندیس های میلر نمادهایی هستند که جهت صفحات اتمی را در کریستال مشخص می کنند این اندیس ها به گونه ای مشخص می شوند که مجوعه ای بی نهایت از صفحات بلوری را شامل مشوند و نحوه انتخابشان بگونه ای است که هماره صفحه انتخاب شده داخل سلول واحد قرار می گیرد. Crystal Structure
27
Example-1 Axis 1 ∞ 1/1 1/ ∞ Miller İndices (100) (1,0,0) X Y Z
Intercept points 1 ∞ Reciprocals 1/1 1/ ∞ Smallest Ratio Miller İndices (100) Crystal Structure
28
Example-2 Axis 1 ∞ 1/1 1/ 1 1/ ∞ Miller İndices (110) (0,1,0) (1,0,0)
Y Z Intercept points 1 ∞ Reciprocals 1/1 1/ 1 1/ ∞ Smallest Ratio Miller İndices (110) Crystal Structure
29
Example-3 Axis 1 1/1 1/ 1 Miller İndices (111) (0,0,1) (0,1,0) (1,0,0)
Y Z Intercept points 1 Reciprocals 1/1 1/ 1 Smallest Ratio Miller İndices (111) Crystal Structure
30
Example-4 Axis 1/2 1 ∞ 1/(½) 1/ 1 1/ ∞ 2 Miller İndices (210) (0,1,0)
(1/2, 0, 0) (0,1,0) Axis X Y Z Intercept points 1/2 1 ∞ Reciprocals 1/(½) 1/ 1 1/ ∞ Smallest Ratio 2 Miller İndices (210) Crystal Structure
31
Example-5 Axis 1 ∞ ½ 2 Miller İndices (102) a b c 1/1 1/ ∞ 1/(½)
Intercept points 1 ∞ Reciprocals 1/1 1/ ∞ 1/(½) Smallest Ratio 2 Miller İndices (102) Crystal Structure
32
Example-6 Axis -1 ∞ ½ 2 Miller İndices (102) a b c 1/-1 1/ ∞ 1/(½)
Intercept points -1 ∞ Reciprocals 1/-1 1/ ∞ 1/(½) Smallest Ratio 2 Miller İndices (102) Crystal Structure
33
Miller Indices [2,3,3] Plane intercepts axes at
Reciprocal numbers are: Indices of the plane (Miller): (2,3,3) Indices of the direction: [2,3,3] (200) (111) (100) (110) (100) Crystal Structure
34
اندیس های میلر و جهتهای صفحات اتمی در بلور
35
اندیس های میلر و جهتهای صفحات اتمی در بلور
36
جهتهای بلوری و صفحات اتمی عمود بر انها اندیس های میلر یکسانی دارند.
37
Crystal Structure
38
Example-7 Crystal Structure
39
Indices of a Family or Form
این {hkl} نماد کلیه اندیس های میلر مربوط به صفحات (hkl) را شامل می شود که بوسیله چرخش به همدیگر مر بوط می شوند Crystal Structure
40
3D – 14 BRAVAIS LATTICES AND THE SEVEN CRYSTAL SYSTEM
تنها 14 شبکه براوه وجود دارد که فضای سه بعدی را می پوشاند. این 14 شبکه نیز در هفت سیستم بلوری معرفی شده گنجانده می شوند. Cubic Crystal System (SC, BCC,FCC) Hexagonal Crystal System (S) Triclinic Crystal System (S) Monoclinic Crystal System (S, Base-C) Orthorhombic Crystal System (S, Base-C, BC, FC) Tetragonal Crystal System (S, BC) Trigonal (Rhombohedral) Crystal System (S) Crystal Structure
41
3–Hexagonal Close-Packed Str.
Crystal Structure
42
Hexagonal Close-packed Structure
a=b a=120, c=1.633a, basis : (0,0,0) (2/3a ,1/3a,1/2c) Crystal Structure
43
Packing A B A Close pack B C Sequence AAAA… Sequence ABABAB..
- simple cubic Sequence ABABAB.. hexagonal close pack Sequence ABAB… - body centered cubic Sequence ABCABCAB.. ?? Crystal Structure
44
First Brillouin Zone: Two Dimensional Oblique Lattice
45
First Four Brillouin Zones: Square Lattice
46
All Brillouin Zones: Square Lattice
47
Primitive Lattice Vectors: BCC Lattice
48
First Brillouin Zone: BCC
49
Primitive Lattice Vectors: FCC
50
Brillouin Zones: FCC
51
First Brillouin Zone BCC
52
First Brillouin Zone FCC
53
X-ray Diffraction Typical interatomic distances in solid are of the order of an angstrom. Thus the typical wavelength of an electromagnetic probe of such distances Must be of the order of an angstrom. Upon substituting this value for the wavelength into the energy equation, We find that E is of the order of 12 thousand eV, which is a typical X-ray Energy. Thus X-ray diffraction of crystals is a standard probe.
59
Wavelength vs particle energy
60
Bragg Diffraction: Bragg’s Law
61
Bragg’s Law The integer n is known as the order of the corresponding
Reflection. The composition of the basis determines the relative Intensity of the various orders of diffraction.
62
Many sets of lattice planes produce Bragg diffraction
63
d Deviation = 2 Ray 1 Ray 2 dSin
BRAGG’s EQUATION Deviation = 2 Ray 1 Ray 2 d dSin The path difference between ray 1 and ray 2 = 2d Sin For constructive interference: n = 2d Sin
67
Bragg Spectrometer
68
Bragg Peaks
69
A beam of X-rays directed at a crystal interacts with the electrons of the atoms in the crystal
The electrons oscillate under the influence of the incoming X-Rays and become secondary sources of EM radiation The secondary radiation is in all directions The waves emitted by the electrons have the same frequency as the incoming X-rays coherent The emission will undergo constructive or destructive interference with waves scattered from other atoms Secondary emission Incoming X-rays
70
Sets Electron cloud into oscillation
Sets nucleus (with protons) into oscillation Small effect neglected
71
Oscillating charge re-radiates In phase with the incoming x-rays
72
von Laue Formulation of X-Ray Diffraction
73
Condition for Constructive Interference
74
Bragg Scattering =K
75
The Laue Condition
76
Ewald Construction
77
Crystal structure determination
Many s (orientations) Powder specimen POWDER METHOD Monochromatic X-rays Single LAUE TECHNIQUE Panchromatic X-rays ROTATING CRYSTAL METHOD Varied by rotation Monochromatic X-rays
78
THE POWDER METHOD Cone of diffracted rays
79
Different cones for different reflections
POWDER METHOD Diffraction cones and the Debye-Scherrer geometry Different cones for different reflections Film may be replaced with detector
80
Schematic X-Ray Diffractometer
Detector X-Ray Source Powdered sample
81
Sample XRD Pattern
82
strong intensity = prominent crystal plane
weak intensity = subordinate crystal plane background radiation
83
Determine D-Spacing from XRD patterns
Bragg’s Law nλ = 2dsinθ n = reflection order (1,2,3,4,etc…) λ = radiation wavelength (1.54 angstroms) d = spacing between planes of atoms (angstroms) θ = angle of incidence (degrees)
84
strong intensity = prominent crystal plane
nλ = 2dsinθ (1)(1.54) = 2dsin(15.5 degrees) 1.54 = 2d(0.267) d = 2.88 angstroms background radiation
85
d-spacing Intensity 2.88 100 2.18 46 1.81 31 1.94 25 2.10 20 1.75 15 2.33 10 2.01 1.66 5 1.71
86
The Bragg equation may be rearranged (if n=1)
from to If the value of 1/(dh,k,l)2 in the cubic system equation above is inserted into this form of the Bragg equation you have Since in any specific case a and l are constant and if l2/4a2 = A pma 2010
87
Insert the values into a table and compute sin and sin2.
Since the lowest value of sin2 is 3A and the next is 4A the first Entry in the Calc. sin2 column is ( /3)*4 etc. d/Å Sin Sin2 Calc. Sin2 (h, k, I) 2.338 (1,1,1) 2.024 (2,0,0) 1.431 (2,2,0) 1.221 (3,1,1) 1.169 (2,2,2) 1.0124 (4,0,0) 0.9289 (3,3,1) 0.9055 (4,2,0) The reflections have now been indexed. pma 2010
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.