Download presentation
Presentation is loading. Please wait.
Published byShonda Stanley Modified over 9 years ago
1
Matthias Maneck - Journal Club WS 04/05 Independent components analysis of starch deficient pgm mutants GCB 2004 M. Scholz, Y. Gibon, M. Stitt, J. Selbig
2
Matthias Maneck - Journal Club WS 04/05 Overview Introduction Methods PCA – Principal Component Analysis ICA – Independent Component Analysis Kurtosis Results Summary
3
Matthias Maneck - Journal Club WS 04/05 Introduction – techniques visualization techniques supervised biological background information unsupervised present major global information General questions about the underlying data structure. Detect relevant components independent from background knowledge.
4
Matthias Maneck - Journal Club WS 04/05 Introduction – techniques PCA dimensionality reduction extracts relevant information related to the highest variance ICA Optimizes independence condition Components represent different non- overlapping information
5
Matthias Maneck - Journal Club WS 04/05 Introduction - experiments Micro plate assays of enzymes form Arabidopsis thaliana. pgm mutant vs. wild type continuous night data
6
Matthias Maneck - Journal Club WS 04/05 Introduction – workflow PCAICAKurtosisDataICs
7
Matthias Maneck - Journal Club WS 04/05 PCA – principal component analysis
8
Matthias Maneck - Journal Club WS 04/05 PCA – principal component analysis 2. Principal Component 1. Principal Component
9
Matthias Maneck - Journal Club WS 04/05 PCA – principal component analysis
10
Matthias Maneck - Journal Club WS 04/05 PCA – calculation
11
Matthias Maneck - Journal Club WS 04/05 PCA – dimensionality reduction = Reduced Data MatrixData MatrixSelected Components
12
Matthias Maneck - Journal Club WS 04/05 PCA – principal component analysis 1. Principal Component 2. Principal Component
13
Matthias Maneck - Journal Club WS 04/05 PCA – principal component analysis
14
Matthias Maneck - Journal Club WS 04/05 PCA – principal component analysis Minimizes correlation between components. Components are orthogonal to each other. Delivers transformation matrix, that gives the influence of the enzymes on the principal components. PCs ordered by size of eigenvalues of cov-matrix = Reduced Data MatrixData MatrixSelected Components
15
Matthias Maneck - Journal Club WS 04/05 ICA – independent component analysis microphone signals are mixed speech signals
16
Matthias Maneck - Journal Club WS 04/05 ICA – independent component analysis = = Microphone Signals XMixing Matrix ASpeech Signals S Microphone signals XDemixing matrix A -1 Speech signals S
17
Matthias Maneck - Journal Club WS 04/05 ICA – independent component analysis The sum of distribution of the same time is more Gaussian.
18
Matthias Maneck - Journal Club WS 04/05 ICA – independent component analysis Maximizes independence (non Gaussianity) between components. ICA doesn’t work with purely Gaussian distributed data. Components are not orthogonal to each other. Delivers transformation matrix, that gives the influence of the PCs on the independent components. ICs are unordered = ICsDemixing MatrixData Matrix
19
Matthias Maneck - Journal Club WS 04/05 Kurtosis – significant components measure of non Gaussianity z – random variable (IC) μ – mean σ – standard deviation positive kurtosis super Gaussian negative kurtosis sub Gaussian
20
Matthias Maneck - Journal Club WS 04/05 Kurtosis – significant components
21
Matthias Maneck - Journal Club WS 04/05 Influence Values Which enzymes have most influence on ICs? = Reduced Data MatrixData MatrixSelected Components = ICs Demixing MatrixData Matrix
22
Matthias Maneck - Journal Club WS 04/05 Influence Values Selected ComponentsDemixing Matrix = Influence Matrix Data MatrixInfluence MatrixICs =
23
Matthias Maneck - Journal Club WS 04/05 Results pgm mutant compares wild type and pgm mutant 17 enzymes,125 samples wild type, pgm mutant continuous night response to carbon starvation 17 enzymes, 55 samples +0, +2, +4, +8, +24, +48, +72, +148 h
24
Matthias Maneck - Journal Club WS 04/05 Results – pgm mutant
25
Matthias Maneck - Journal Club WS 04/05
26
Results – continuous night
27
Matthias Maneck - Journal Club WS 04/05 Results – combined
28
Matthias Maneck - Journal Club WS 04/05 Results – combined
29
Matthias Maneck - Journal Club WS 04/05 Results – combined
30
Matthias Maneck - Journal Club WS 04/05 Summary ICA in combination with PCA has higher discriminating power than only PCA. Kurtosis is used for selection optimal PCA dimension and ordering of ICs. pgm experiment, 1st IC discriminates between mutant and wild type. Continuous night, 2nd IC represents time component. The two most strongly implicated enzymes are identical.
31
Matthias Maneck - Journal Club WS 04/05 References Scholz M., Gibon Y., Stitt M., Selbig J.: Independent components analysis of starch deficient pgm mutants. Scholz M., Gatzek S., Sterling A., Fiehn O., Selbig J.: Metabolite fingerprinting: an ICA approach. Blaschke, T., Wiskott, L.: CuBICA: Independent Component Analysis by Simultaneous Third- and Fourth- Order Cumulant Diagonalization. IEEE Transactions on Signal Processing, 52(5):1250-1256. http://itb.biologie.hu-berlin.de/~blaschke/ Hyvärinen A., Karhunen J., Oja E.: Independent Component Analysis. J. Wiley. 2001.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.