Download presentation
Presentation is loading. Please wait.
Published byCynthia Hall Modified over 9 years ago
1
THE MICROWAVE SPECTRUM, STRUCTURE, AND DOUBLE PROTON EXCHANGE OF FORMIC ACID – NITRIC ACID Becca Mackenzie Chris Dewberry, Ken Leopold Department of Chemistry, University of Minnesota 69 th International Symposium of Molecular Spectroscopy 1
2
Carboxylic Acid Dimers Simple carboxylic acid dimers as prototypes for larger, doubly hydrogen bonded complexes, e.g. DNA base pairs Formic acid – Acetic acid 3 Formic acid – Propiolic acid 1,2 Formic acid – Benzoic acid 4 [1] Daly, A. M., Bunker, P. R., & Kukolich, S. G. (2010). JCP, 132(20), 201101. [2] Daly, A. M., Douglass, K. O., Sarkozy, L. C., Neill, J. L., Muckle, M. T., Zaleski, D. P., Pate, B. H., Kukolich, S. G. (2011). JCP, 135(15), 154304. [3] Tayler, M. C. D., Ouyang, B., & Howard, B. J. (2011). JCP, 134(5), 054316. [4] Evangelisti, L., Patricia, E., Cocinero, E. J., Castan, F., Lesarri, A., Caminati, W., & Meyer, R. (2012). JCPL, 3, 3770. [5] Feng, G., Favero, L. B., Maris, A., Vigorito, A., Caminati, W., & Meyer, R. (2012). JACS, 134, 19281–19286. Acrylic acid dimer 5 2
3
Double Proton Transfer H Frequency 3
4
Ab initio results for carboxylic acid dimers Complex Barrier Height (kcal/mol) Binding Energy (kcal/mol) a Hydrogen Bond Lengths (Å) Formic- Formic 1 7.917.0(14.5)1.80/1.80 Formic- Propiolic 2 7.717.2(14.6)1.80/1.78 Formic- Benzoic 3 7.018.2(15.4)1.79/1.75 Acrylic- Acrylic 4 6.918.8 (15.8)1.76/1.76 Nitric- Formic 9.214.3(11.8)1.97/1.76 Double proton exchange observed for all Will formic acid – nitric acid tunnel? a.Binding energies in parentheses are counterpoise corrected MP2/6-31++G(2d,2p) [2] Daly, A. M., Douglass, K. O., Sarkozy, L. C., Neill, J. L., Muckle, M. T., Zaleski, D. P., Pate, B. H., Kukolich, S. G. (2011). JCP, 135(15), 154304. [3] Evangelisti, L., Patricia, E., Cocinero, E. J., Castan, F., Lesarri, A., Caminati, W., & Meyer, R. (2012). JCPL, 3, 3770. [4] Feng, G., Favero, L. B., Maris, A., Vigorito, A., Caminati, W., & Meyer, R. (2012). JACS, 134, 19281–19286. [1] Ortlieb, M., & Havenith, M. (2007). JCP, 111, 7355. 4
5
Experimental Introduction of Sample to Cavity HNO 3 through pulsed-nozzle HCOOH through continuous flow line Water kills the signal and creates a lot of unwanted ones Started with 70% HNO 3, 91% HCOOH Finished with 91% HNO 3, 95% HCOOH HCOOH in Ar HNO 3 in Ar Cavity 5
6
Searches for the J = 2←1 Transitions K=1 50 MHz K=0 50 MHz K=1 30 MHz Frequency, MHz 6
7
Observed Lines and Fit MP2/6-311g(2d,2p) (MHz) 6154.22 1363.37 1116.11 Fit Rotational Constants (MHz) 6175.46 1368.83 1121.84 Frequency, MHz 7
8
HCOOH - H 15 NO 3 HCOOD - H 15 NO 3 Evidence of Double Proton Exchange 5 14 -4 13 8
9
Spin Statistics and Relative Intensities + - + 3:1 ratio expected on the basis of 1 H spin statistics 2 02 -1 01 2 12 -1 11 9 HCOOH-H 15 NO 3 -
10
Evidence of Double Proton Exchange HCOOH-HNO 3 2 02 -1 01 + + + 10 - - - -
11
Single State Fits Constants HCOOH-HNO 3 0 + State HCOOH-HNO 3 0 - State HCOOH-H 15 NO 3 0 + State HCOOH-H 15 NO 3 0 - State A (MHz)6175.920(98)6175.264(49)6174.767(54)6174.877(44) B (MHz)1368.84012(36)1368.84027(74)1360.43598(44)1360.43597(59) C (MHz)1121.83870(36)1121.83199(60)1116.17782(40)1116.17187(44) ID (amu Å 2 )-0.541-0.547-0.553-0.549 14 N Χ aa (MHz)-0.7885(15)-0.7872(22)-- 14 N Χ bb -Χ cc (MHz)0.513(11)0.440(56)-- Δ J (kHz)0.3249(49)0.2897(43)0.2912(33)0.2875(32) Δ JK (kHz)0.820(87)1.261(46)1.260(54)1.313(53) δ J (kHz)0.0634(49)0.0760(95)0.0507(35)0.0646(42) RMS (kHz)2222 N39361819 11
12
What about the tunneling frequency? EBEB Frequency 12 µ b = 0.21 D µ a = 2.69 D
13
Comparison of Systems Complex Barrier Height (kcal/mol) Binding Energy (kcal/mol) a Hydrogen Bond Lengths (Å) Splitting (5 05 -6 06 ) (MHz) b Formic- Formic 1 7.917.0(14.5)1.80/1.80~40 Formic- Propiolic 2 7.717.2(14.6)1.80/1.782.43 Formic- Benzoic 3 7.018.2(15.4)1.79/1.750.986 Acrylic- Acrylic 4 6.918.8 (15.8)1.76/1.764.706 Nitric- Formic 9.214.3(11.8)1.97/1.760.048 a.Binding energies in parentheses are counterpoise corrected b.Experimental values, formic-formic value calculated from IR constants MP2/6-31++G(2d,2p) 13 [2] Daly, A. M., Douglass, K. O., Sarkozy, L. C., Neill, J. L., Muckle, M. T., Zaleski, D. P., Pate, B. H., Kukolich, S. G. (2011). JCP, 135(15), 154304. [3] Evangelisti, L., Patricia, E., Cocinero, E. J., Castan, F., Lesarri, A., Caminati, W., & Meyer, R. (2012). JCPL, 3, 3770. [4] Feng, G., Favero, L. B., Maris, A., Vigorito, A., Caminati, W., & Meyer, R. (2012). JACS, 134, 19281–19286. [1] Ortlieb, M., & Havenith, M. (2007). JCP, 111, 7355.
14
Rotational Constants for Seven Isotopologues 14 IsotopeA (MHz)B (MHz)C (MHz) 14 N Χ aa (MHz) 14 N Χ bb -Χ cc (MHz) HCOOH-HNO 3 0 - State 6175.264(49)1368.84027(74)1121.83199(60)-0.7872(22)0.440(56) HCOOH-HNO 3 0 + State 6175.920(98)1368.84012(36)1121.83870(36)-0.7885(15)0.513(11) HCOOH-H 15 NO 3 0 - State 6174.877(44)1360.43597(59)1116.17187(44)-- HCOOH-H 15 NO 3 0 + State 6174.767(54)1360.43598(44)1116.17782(40)-- HCOOD-H 15 NO 3 6077.493(27)1355.55430(19)1109.69374(17)-- HCOOD-HNO 3 6077.329(99)1364.00473(81)1115.3578(10)-0.811(17)0.460(52) H 13 COOH-HNO 3 6172.66(15)1347.9018(13)1107.6852(13)-0.805(45)0.54(25) HCOOH-DNO 3 6094.960(10)1365.3093(11)1116.7930(11)-0.839(11)0.23(19) DCOOH-HNO 3 6167.29(57)1325.6573(34)1092.5301(41)-0.777(25)0.344(92)
15
Structure Analysis Leopold, K. R. (2012). JMS, 278, 27–30. 15
16
Schematic of Structure Determination R cm Fit from C rotational constants θ1θ1 From 14 N nuclear hyperfine θ2θ2 Using R cm and θ 1 adjusted θ 2 to reproduce A or B Done for all 7 isotopologues using ground state rotational constants Using experimental moments of inertia for monomers 16 Nitric acid structure- Cox, A.P.; Ellis, M.C.; Attfield, C.J.; Ferris, A.C. (1994) JMS. 320, 91. Formic acid structure- Cazzoli, G.; Puzzarini, C.; Stopkowicz, S.; Gauss, J. (2011) AJSS. 196, 10. Winnewisser, M.; Winnewisser, B.P.; Stein, M.; Birk, M.; Wagner, G.; Winnewisser, G.; Yamada, K.M.T., Belov, S.P.; Baskakow, O.I. (2002) JMS., 216, 259.
17
Structure Results for Each Isotopologue ComplexR cm 11 22 R(H8-O5)R(O9-H4)<(O5-H8-O6)<(O3-H4-O9) HNO 3 - HCOOH 3.47597651.31-80.401.65271.8523166.7172.9 H 15 NO 3 - HCOOH 3.47678751.37-80.421.65311.8516166.8172.9 H 15 NO 3 - HCOOD 3.45760451.37-81.771.64641.8586166.0173.1 HNO 3 - HCOOD 3.45680851.23-81.541.64721.8483165.9172.4 HNO 3 - H 13 COOH 3.48435752.02-80.341.66221.8435166.9172.3 DNO 3 - HCOOH 3.45911645.24-79.641.67951.8384170.3171.4 HNO 3 - DCOOH 3.50691950.90-80.601.64551.8585170.0172.9 Average of Max & Min Value1.663(17)1.849(10)168.1(22)172.3(9) 17
18
Structure of Formic Acid – Nitric Acid Seven isotopologues in total 1.663(17) Å 1.849(10) Å 168.1(22)° 172.3(9)° D 15 N D D 13 C 18
19
Structure from STRFIT R O5-O6 α C1-O5-O6 β O5-O6-N7 19 Kisiel, Z., (2003) JMS., 218, 58.
20
Structure from STRFIT Converged to one of two structures depending on the starting parameters 20 Å Å Å Å
21
Summary of Structural Parameters R(H8-O5)R(O9-H4)<(O5-H8-O6)<(O3-H4-O9) Inertial Equations1.663(17)1.849(10)168.1(22)172.3(9) STRFIT 11.671.84170.0171.5 Value from STRFIT 22.0341.716160.1155.4 Ab initio1.68271.8002170.3176.3 Ab initio adjusted geometry 1.680(17)1.814(10)172.7(22)173.6(9) 21
22
Structure of Formic Acid – Nitric Acid Preferred structural values 1.680(17) Å 1.814(10) Å 172.7(22)° 173.6(9)°
23
Proton Transfer Parameter By examining values of the 14 N nuclear quadrupole coupling constant, χ cc, we are able to track the degree of proton release. NO 3 – HNO 3 HNO 3 - H 2 O HCOOH - HNO 3 Q PT HNO 3 - (H 2 O) 2 HNO 3 - N(CH 3 ) 3 100% 0% 23
24
Conclusions Like all good gophers, we tunnel Nitric acid – formic acid undergoes double proton transfer despite significant asymmetry in the hydrogen bonded structure. The splittings in the a-type spectra were two orders of magnitude smaller than those observed for related carboxylic acid dimers. Careful analysis of the moments of inertia yields excellent agreement with ab initio results, suggesting minimal delocalization. 24
25
Funding & Acknowledgements Leopold Group Dr. Chris Dewberry and Dr. Brooke Timp Lester C. and Joan M. Krogh Fellowship 25
26
Determination of θ 1 Determine τ from 14 N hyperfine Principle axis system of the quadrupole coupling tensor of HNO 3 does not coincide with its inertial axis system and because the Z axis does not exactly coincide with the a- axis of the complex 26 θ 1 = Iterative method
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.