Download presentation
Presentation is loading. Please wait.
1
Fundamental Group http://cis.k.hosei.ac.jp/~yukita/
2
Fundamental Group2 Path homotopy 1 r 0 0 t 1 g f hrhr g f hrhr x0x0 x1x1 X H
3
Fundamental Group3 Simply connected space
4
Fundamental Group4 Path homotopy classes
5
Fundamental Group5 Proof of Lemma 1.1 Reflexivity 1 r 0 0 t 1 f f x0x0 x1x1 f f X H
6
Fundamental Group6 Symmetry 1 r 0 0 t 1 g f h 1-r g f x0x0 x1x1 K X
7
Fundamental Group7 Transitivity 1 1/2 0 0 t 1 g f h g f h x0x0 x1x1 L K X M
8
Fundamental Group8 Fundamental set
9
Fundamental Group9 1.2 Naturality
10
Fundamental Group10 1.3 Theorem
11
Fundamental Group11 Multiplication in P(X) and in p(X)
12
Fundamental Group12 1.4 Lemma 1 r 0 0 1/2 1 gf g f x0x0 x1x1 X L f’g’ HK x2x2 f' g'
13
Fundamental Group13 1.5 Lemma
14
Fundamental Group14 1.6 Theorem
15
Fundamental Group15 1.6 Proof (a) p 0 f ½ g ¾ h 1 0 ¼ ½ 1 f g h
16
Fundamental Group16 1.6 Proof (b) 0 x 0 * ½ f 1 q f r 0 ½ 1 f x 1 *
17
Fundamental Group17 1.6 Proof (c1) 0 f ½ f 1 u f v 0 ½ 1 f
18
Fundamental Group18 1.6 Proof (c2) 0 f ½ f 1 u f v 0 ½ 1 f
19
Fundamental Group19 1.7 Theorem
20
Fundamental Group20 Summary
21
Fundamental Group21 Fundamental Group at a Basepoint
22
Fundamental Group22 3.1 Theorem p 1 (X,x) is a group.
23
Fundamental Group23 3.2 Theorem The fundamental group have the functorial properties:
24
Fundamental Group24 3.3 Corollary Any homeomorphism F:X Y induces an isomorphism F # :p 1 ( X, x ) p 1 ( Y, F ( x )).
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.