Download presentation
Published byShannon Hill Modified over 9 years ago
1
The Impossibility of Obfuscation with Auxiliary Input or a Universal Simulator
Nir Bitansky Ran Canetti Henry Cohn Shafi Goldwasser Yael Tauman-Kalai Omer Paneth Alon Rosen
2
Program Obfuscation π₯ y Program Obfuscation π₯ y Obfuscated program
3
Private Key to Public Key
π cipher πΈπ π π π (π) Obfuscation π cipher Public Key
4
Ideal Obfuscation Hides everything about the program except for its input\output behavior Point Function etc. [Canetti 97, Wee 05, Bitansky- Canetti 10, Canetti-Rothblum-Varia 10] Unobfuscatable Functions [Barak-Goldreich-Impagliazzo- Rudich-Sahai-Vadhan-Yang 01] All functions ?
5
Obfuscation Constructions
Before 2013: No general solution. All functions All functions
6
Obfuscation Constructions
Before 2013: No general solution. 2013: Candidate obfuscation for all circuits [Garg-Gentry-Halevi-Raykova-Sahai-Waters 13] All functions All functions
7
New Impossibility Result
Under computational assumptions, a natural notion of ideal obfuscation cannot be achieved for a large family of cryptographic functionalities. (strengthen the impossibility of [Goldwasser-Kalai 05])
8
Virtual Black-Box (VBB)
[Barak-Goldreich-Impagliazzo-Rudich-Sahai-Vadhan-Yang 01] Algorithm πͺ is an obfuscator for a class π if: For every PPT adversary π΄ there exists a PPT simulator π such that for every πΆβπ and every predicate π(πΆ): πΆ π΄ π πͺ(πΆ) π(πΆ) Inefficient!
9
Using Obfuscation Reduction π π=πβ
π π,π π΄
10
VBB with a Universal Simulator
Algorithm πͺ is an obfuscator for a class π if: There exists a PPT simulator π such that for every PPT adversary π΄ such that for every πΆβπ and every predicate π(πΆ): πΆ π΄ π(π΄) πͺ(πΆ) π(πΆ)
11
Universal Simulation Universal Simulators Black-box Simulators
Barakβs ZK simulator
12
New Impossibility Result
Under computational assumptions, VBB obfuscation with a universal simulator cannot be achieved for a large family of cryptographic functionalities.
13
Pseudo-Entropic functions
A function family π π has super-polynomial pseudo-entropy if there exists a set of inputs πΌ such that for a random function π π , there exists π with super-polynomial min-entropy: π· β π 1 2 3 β¦ πΌ π π (1) π π (2) π π (3) π π (πΌ)\Z
14
Examples Pseudo-random functions
Semantically-secure encryption (when the randomness is a PRF of the message) π cipher πΈπ π π π π ππ
πΉ π
15
New Impossibility Result
Under computational assumptions, VBB obfuscation with a universal simulator is impossible for any pseudo-entropic function
16
Indistinguishability Obfuscation
[Barak-Goldreich-Impagliazzo-Rudich-Sahai-Vadhan-Yang 01] β‘ πΆ 2 πͺ(πΆ 1 ) β π πͺ(πΆ 2 ) πΆ 1 Assumption: indistinguishability obfuscation for all circuits (A candidate construction given in [GGHRSW13])
17
This Work Assuming indistinguishability obfuscation,
VBB obfuscation with a universal simulator is impossible for any pseudo-entropic function
18
This Work Average-case VBB with a universal simulator
Worst-case VBB with a universal simulator Is Impossible for pseudo-entropic functions Is Impossible for pseudo-entropic functions Assuming indistinguishability obfuscation for all functions Assuming indistinguishability obfuscation for point-filter functions or equivalently, witness encryption
19
[Goldwasser-Kalai 05]: This work:
Average-case VBB with a universal simulator Worst-case VBB with a universal simulator [Goldwasser-Kalai 05]: Is Impossible for Filter functions Is Impossible for pseudo-entropic functions Unconditionally Assuming VBB obfuscation for point-filter functions This work: Is Impossible for pseudo-entropic functions Is Impossible for pseudo-entropic functions Assuming indistinguishability obfuscation for all functions Assuming indistinguishability obfuscation for point-filter functions
20
Universal Simulation and Auxiliary Input
For every PPT adversary π΄ there exists a PPT simulator π such that for every πΆβπ, every predicate π πΆ and every auxiliary input π§: πΆ π΄ π§ π π§ πͺ(πΆ) π(πΆ) VBB with a universal simulator
21
Universal Simulation and Auxiliary Input
Average-case VBB with a universal simulator Worst-case VBB with a universal simulator Average-case VBB with independent auxiliary input Worst-case VBB with dependent auxiliary input
22
Proof Idea What can we do with an obfuscated code
that we cannot do with black-box access? [Goldwasser-Kalai 05]: Find a polynomial size circuit computing the function!
23
Impossibility for Worst-Case VBB
Let π π be a family of PRFs. Fix the simulator π. Sample a random π π . Construct an adversary π΄ (that depends on π π ) that fail π. Let πΌ be the set of inputs 1,2,β¦,2β
πͺ π π π΄ π΄ π,π πΆ : If πΆ = πͺ π π and πΆ πΌ = π π (πΌ): output the secret π, else output β₯. π\β₯ πΆ πΌ π π (πΌ)
24
Impossibility for Worst-Case VBB
π π π΄ π π\β₯ π΄ πͺ( π π ) π π πΌ π π (πΌ)
25
Using Indistinguishability Obfuscation
π΄ π΄ π\β₯ π΄ π\β₯ β₯ β π β‘ πΌ π π (πΌ) πΌ π π΄ π΄ π\β₯ π΄ π\β₯ β₯ β π β π πΌ π π (πΌ) πΌ π
26
Impossibility for Average-Case VBB
π΄ π\β₯ π΄ πΌ πΆ πΌ π π (πΌ) ππ
πΉ π βπ πΆ(πΌ) π΄ π πΆ : If πΆ = πͺ π π : output π=ππ
πΉ π (πΆ(πΌ)) else output β₯.
27
Impossibility for Average-Case VBB
π΄ πΌ ππ
πΉ π βπ πΆ(πΌ) Obfuscation should hide ππ
πΉ π π π πΌ Use Indistinguishability Obfuscation together with puncturable pseudo-random functions
28
Thanks!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.