Download presentation
Presentation is loading. Please wait.
Published byPhoebe Osborne Modified over 9 years ago
1
Prof. Busch - LSU1 Pushdown Automata PDAs
2
Prof. Busch - LSU2 Pushdown Automaton -- PDA Input String Stack States
3
Prof. Busch - LSU3 Initial Stack Symbol Stack bottomspecial symbol stack head top Appears at time 0
4
Prof. Busch - LSU4 The States Input symbol Pop symbol Push symbol
5
Prof. Busch - LSU5 top input stack Replace
6
Prof. Busch - LSU6 Push top input stack
7
Prof. Busch - LSU7 Pop top input stack
8
Prof. Busch - LSU8 No Change top input stack
9
Prof. Busch - LSU9 Non-Determinism PDAs are non-deterministic Allowed non-deterministic transitions
10
Prof. Busch - LSU10 Example PDA PDA :
11
Prof. Busch - LSU11 Basic Idea: 1.Push the a’s on the stack 2. Match the b’s on input with a’s on stack 3. Match found
12
Prof. Busch - LSU12 Execution Example: Input current state Time 0 Stack
13
Prof. Busch - LSU13 Input Time 1 Stack
14
Prof. Busch - LSU14 Input Stack Time 2
15
Prof. Busch - LSU15 Input Stack Time 3
16
Prof. Busch - LSU16 Input Stack Time 4
17
Prof. Busch - LSU17 Input Stack Time 5
18
Prof. Busch - LSU18 Input Stack Time 6
19
Prof. Busch - LSU19 Input Stack Time 7
20
Prof. Busch - LSU20 Input Time 8 accept Stack
21
Prof. Busch - LSU21 A string is accepted if there is a computation such that: All the input is consumed AND The last state is an accepting state we do not care about the stack contents at the end of the accepting computation
22
Prof. Busch - LSU22 Rejection Example: Input current state Time 0 Stack
23
Prof. Busch - LSU23 Rejection Example: Input current state Time 1 Stack
24
Prof. Busch - LSU24 Rejection Example: Input current state Time 2 Stack
25
Prof. Busch - LSU25 Rejection Example: Input current state Time 3 Stack
26
Prof. Busch - LSU26 Rejection Example: Input current state Time 4 Stack
27
Prof. Busch - LSU27 Rejection Example: Input current state Time 4 Stack reject
28
Prof. Busch - LSU28 The string is rejected by the PDA There is no accepting computation for
29
Prof. Busch - LSU29 Another PDA example PDA :
30
Prof. Busch - LSU30 Basic Idea: 1.Push v on stack 2. Guess middle of input 3. Match on input with v on stack 4. Match found
31
Prof. Busch - LSU31 Execution Example: Input Time 0 Stack
32
Prof. Busch - LSU32 Input Time 1 Stack
33
Prof. Busch - LSU33 Input Time 2 Stack
34
Prof. Busch - LSU34 Input Time 3 Stack Guess the middle of string
35
Prof. Busch - LSU35 Input Time 4 Stack
36
Prof. Busch - LSU36 Input Time 5 Stack
37
Prof. Busch - LSU37 Input Time 6 Stack accept
38
Prof. Busch - LSU38 Rejection Example: Input Time 0 Stack
39
Prof. Busch - LSU39 Input Time 1 Stack
40
Prof. Busch - LSU40 Input Time 2 Stack
41
Prof. Busch - LSU41 Input Time 3 Stack Guess the middle of string
42
Prof. Busch - LSU42 Input Time 4 Stack
43
Prof. Busch - LSU43 Input Time 5 Stack There is no possible transition. Input is not consumed
44
Prof. Busch - LSU44 Another computation on same string: Input Time 0 Stack
45
Prof. Busch - LSU45 Input Time 1 Stack
46
Prof. Busch - LSU46 Input Time 2 Stack
47
Prof. Busch - LSU47 Input Time 3 Stack
48
Prof. Busch - LSU48 Input Time 4 Stack
49
Prof. Busch - LSU49 Input Time 5 Stack No accept state is reached
50
Prof. Busch - LSU50 There is no computation that accepts string
51
Prof. Busch - LSU51 Pushing & Popping Strings Input symbol Push string Pop string
52
Prof. Busch - LSU52 top input stack Replace push string Example: pop string top
53
Prof. Busch - LSU53 pop push Equivalent transitions
54
Prof. Busch - LSU54 Another PDA example PDA
55
Prof. Busch - LSU55 Time 0 Input current state Stack Execution Example:
56
Prof. Busch - LSU56 Time 1 Input Stack
57
Prof. Busch - LSU57 Time 3 Input Stack
58
Prof. Busch - LSU58 Time 4 Input Stack
59
Prof. Busch - LSU59 Time 5 Input Stack
60
Prof. Busch - LSU60 Time 6 Input Stack
61
Prof. Busch - LSU61 Time 7 Input Stack
62
Prof. Busch - LSU62 Time 8 Input Stack accept
63
Prof. Busch - LSU63 Formalities for PDAs
64
Prof. Busch - LSU64 Transition function:
65
Prof. Busch - LSU65 Transition function:
66
Prof. Busch - LSU66 Formal Definition Pushdown Automaton (PDA) States Input alphabet Stack alphabet Transition function Accept states Stack start symbol Initial state
67
Prof. Busch - LSU67 Instantaneous Description Current state Remaining input Current stack contents
68
Prof. Busch - LSU68 Input Stack Time 4: Example:Instantaneous Description
69
Prof. Busch - LSU69 Input Stack Time 5: Example:Instantaneous Description
70
Prof. Busch - LSU70 We write: Time 4 Time 5
71
Prof. Busch - LSU71 A computation:
72
Prof. Busch - LSU72 For convenience we write:
73
Prof. Busch - LSU73 Language of PDA Language accepted by PDA : Initial state Accept state
74
Prof. Busch - LSU74 Example: PDA :
75
Prof. Busch - LSU75 PDA :
76
Prof. Busch - LSU76 PDA : Therefore:
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.