Presentation is loading. Please wait.

Presentation is loading. Please wait.

Physics 211 Space - time & space-space diagrams Kinetic Equations of Motion Projectile motion Uniform circular motion Moving coordinate systems Relative.

Similar presentations


Presentation on theme: "Physics 211 Space - time & space-space diagrams Kinetic Equations of Motion Projectile motion Uniform circular motion Moving coordinate systems Relative."— Presentation transcript:

1 Physics 211 Space - time & space-space diagrams Kinetic Equations of Motion Projectile motion Uniform circular motion Moving coordinate systems Relative motion Galilean Transformation of coordinates 3: Two Dimensional Motion

2 r(t 1 ) r(t 2 ) x y space-space diagram

3

4 at 1   dvt 1  dt  d 2 xt 1  2 i  d 2 yt 1  2 j at 1   dvt 1   a x t 1  i  a y t 1  j speed= vt   vt   dxt  dt     2  dyt  dt     2 acceleration = at   at   d 2 xt  dt 2     2  d 2 yt  2     2 average quantities= final value-initial value time taken

5 acceleration due force of gravity near the earths surface is approximately constant Neglect air resistance Neglect rotation of earth Then we can use kinetic equations of motion for projectile motion

6 i j y x

7 a  g  9.81j m s 2 r0   0 rt   1 2 gt 2     j  v x 0  t  i  v y 0  t  j  v x 0  t  i  v y 0  t  1 2 2     j  xt   v x 0  t yt   v y 0  t  1 2 2     y x Horizontal and vertical positions

8 velocity in x direction x t  = dx dt  v x 0  velocity in y direction y t  = dy dt  v y 0   9.81t when projectile reaches highest point v y (t)=0  v y 0   9.81t  0  t high  v y 0  9.81  xt high   v x 0  v y 0  9.81 ; yt high   v y 0  2 9.81 - 1 2 9. v y 0  9.       2 = 1 2 v y 0  2 9. = v y 0  2 19.62 projectile hits ground when yt   0  t v y 0   1 2 9.81t      0  t  0 or t  2 vy0vy0  9.81  x max  2 v x 0  v y 0  9.81 v v

9 trajectory angle tan   slope of tangent to path at t  0  slope of velocity vector at t  0  v y 0  v x 0   dy dt dx dt  dy dx  tan  1 v y 0  v x 0        y x 

10 initial speed= v0   v x 0  2  v y 0  2 v x 0   v0  cos  v y 0   v0  sin   xt high   v0  2 sin  cos  g  v0  2 sin2  2g yt high   v0  2 sin 2  2g and x range  2 v x 0  v y 0  9.81  2v0  2 sin  cos  g  v0  2 sin2  g Maximun height and range can be expressed in terms of v0  and 

11 y x  v(0) v0  2 sin 2  2g v0  2 sin (2  g

12 Uniform circular motion  r v vt   v=constant; rt   r  position vector rt  = xt ,yt    rcos  t ,rsin  t   rcos  t ,rsin  t    rcos  t,rsin  t   t   t  d  t  dt  constant        is angular speed angular acceleration d  t  dt  0 distance travelled s = r  r  t linear speed=v= ds dt  r 

13 rt   rcos  t i  rsin  t j  r ˆ rt  vt   drt  dt  r  sin  t i  r  cos  t j  r  sin  t i  cos  t j   r  ˆ vt  at   dvt  dt  r  2 cos  t i  2 sin  t j   r  2 cos  t i  sin  t j   r  2 ˆ rt  at   r  2 ˆ rt   v 2 r ˆ rt  at   v 2 r  constant

14 Relative motion observer 1 observer 2 u(t)=u=constant r 2 (t) r 1 (t) r(t)=ut

15 r 1 t   position vector of object in coordinate system r 2 t   r 1 t   r 2 t   ut  r 2 t   r 1 t   ut v 2 t   v 1 t   u a 2 t   a 1 t      Galilean Transformation 1  2 1 2

16 Nonuniform curvilinear motion

17 rt   rt  cos  t  i  sin  t  j  vt   drt  dt  v t  ˆ vt  find unit vector, ˆ ct  perpendicular to ˆ vt  points to center of curvature of path at this point   ˆ vt   ˆ vt   1  d dt ˆ vt   ˆ vt    0  d ˆ vt   ˆ vt   ˆ vt   d ˆ vt   0  ˆ vt   d ˆ vt   0 thus ˆ ct   d ˆ vt  dt d ˆ vt 

18 a t   dvt   d v t  ˆ vt   v t  d ˆ vt  at   a t t  ˆ vt  +a r t  ˆ ct  a r t   v t  2 rt   radial(centripetal) acceleration a t t   rt   t   tangential acceleration rt   distance to center of curvature  


Download ppt "Physics 211 Space - time & space-space diagrams Kinetic Equations of Motion Projectile motion Uniform circular motion Moving coordinate systems Relative."

Similar presentations


Ads by Google