Download presentation
Presentation is loading. Please wait.
Published byMilo Greer Modified over 9 years ago
1
Physics 211 Space - time & space-space diagrams Kinetic Equations of Motion Projectile motion Uniform circular motion Moving coordinate systems Relative motion Galilean Transformation of coordinates 3: Two Dimensional Motion
2
r(t 1 ) r(t 2 ) x y space-space diagram
4
at 1 dvt 1 dt d 2 xt 1 2 i d 2 yt 1 2 j at 1 dvt 1 a x t 1 i a y t 1 j speed= vt vt dxt dt 2 dyt dt 2 acceleration = at at d 2 xt dt 2 2 d 2 yt 2 2 average quantities= final value-initial value time taken
5
acceleration due force of gravity near the earths surface is approximately constant Neglect air resistance Neglect rotation of earth Then we can use kinetic equations of motion for projectile motion
6
i j y x
7
a g 9.81j m s 2 r0 0 rt 1 2 gt 2 j v x 0 t i v y 0 t j v x 0 t i v y 0 t 1 2 2 j xt v x 0 t yt v y 0 t 1 2 2 y x Horizontal and vertical positions
8
velocity in x direction x t = dx dt v x 0 velocity in y direction y t = dy dt v y 0 9.81t when projectile reaches highest point v y (t)=0 v y 0 9.81t 0 t high v y 0 9.81 xt high v x 0 v y 0 9.81 ; yt high v y 0 2 9.81 - 1 2 9. v y 0 9. 2 = 1 2 v y 0 2 9. = v y 0 2 19.62 projectile hits ground when yt 0 t v y 0 1 2 9.81t 0 t 0 or t 2 vy0vy0 9.81 x max 2 v x 0 v y 0 9.81 v v
9
trajectory angle tan slope of tangent to path at t 0 slope of velocity vector at t 0 v y 0 v x 0 dy dt dx dt dy dx tan 1 v y 0 v x 0 y x
10
initial speed= v0 v x 0 2 v y 0 2 v x 0 v0 cos v y 0 v0 sin xt high v0 2 sin cos g v0 2 sin2 2g yt high v0 2 sin 2 2g and x range 2 v x 0 v y 0 9.81 2v0 2 sin cos g v0 2 sin2 g Maximun height and range can be expressed in terms of v0 and
11
y x v(0) v0 2 sin 2 2g v0 2 sin (2 g
12
Uniform circular motion r v vt v=constant; rt r position vector rt = xt ,yt rcos t ,rsin t rcos t ,rsin t rcos t,rsin t t t d t dt constant is angular speed angular acceleration d t dt 0 distance travelled s = r r t linear speed=v= ds dt r
13
rt rcos t i rsin t j r ˆ rt vt drt dt r sin t i r cos t j r sin t i cos t j r ˆ vt at dvt dt r 2 cos t i 2 sin t j r 2 cos t i sin t j r 2 ˆ rt at r 2 ˆ rt v 2 r ˆ rt at v 2 r constant
14
Relative motion observer 1 observer 2 u(t)=u=constant r 2 (t) r 1 (t) r(t)=ut
15
r 1 t position vector of object in coordinate system r 2 t r 1 t r 2 t ut r 2 t r 1 t ut v 2 t v 1 t u a 2 t a 1 t Galilean Transformation 1 2 1 2
16
Nonuniform curvilinear motion
17
rt rt cos t i sin t j vt drt dt v t ˆ vt find unit vector, ˆ ct perpendicular to ˆ vt points to center of curvature of path at this point ˆ vt ˆ vt 1 d dt ˆ vt ˆ vt 0 d ˆ vt ˆ vt ˆ vt d ˆ vt 0 ˆ vt d ˆ vt 0 thus ˆ ct d ˆ vt dt d ˆ vt
18
a t dvt d v t ˆ vt v t d ˆ vt at a t t ˆ vt +a r t ˆ ct a r t v t 2 rt radial(centripetal) acceleration a t t rt t tangential acceleration rt distance to center of curvature
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.