Download presentation
Presentation is loading. Please wait.
Published byDortha Cannon Modified over 9 years ago
1
Math 2 Geometry Based on Elementary Geometry, 3 rd ed, by Alexander & Koeberlein 1.5 Introduction to Geometric Proof
2
Properties of Equality Addition property of equality If a = b, then a + c = b + c Subtraction property of equality If a = b, then a – c = b – c Multiplication property of equality If a = b, then a·c = b·c Division property of equality If a = b and c 0, then a/c = b/c
3
Properties of Inequality Addition property of inequality If a > b, then a + c > b + c Subtraction property of inequality If a > b, then a – c > b – c Multiplication property of inequality If a > b, and c > 0, then a·c > b·c Division property of inequality If a > b and c > 0, then a/c > b/c
4
More Algebra Properties Distributive property a(b + c) = a·b + a·c Substitution property If a = b, then a replaces b in any equation Transitive property If a = b and b = c, then a = c
5
Proof Given:2(x – 3) + 4 = 10 Prove: x = 6 StatementsReasons 1.2(x – 3) + 4 = 10 2. 3. 4. 5. x = 6 1.Given 2. 3. 4. 5.
6
Proof Given:2(x – 3) + 4 = 10 Prove: x = 6 StatementsReasons 1.2(x – 3) + 4 = 10 2.2x – 6 + 4 = 10 3. 4. 5. x = 6 1.Given 2. 3. 4. 5.
7
Proof Given:2(x – 3) + 4 = 10 Prove: x = 6 StatementsReasons 1.2(x – 3) + 4 = 10 2.2x – 6 + 4 = 10 3. 4. 5. x = 6 1.Given 2.Distributive Property 3. 4. 5.
8
Proof Given:2(x – 3) + 4 = 10 Prove: x = 6 StatementsReasons 1.2(x – 3) + 4 = 10 2.2x – 6 + 4 = 10 3.2x – 2 = 10 4. 5. x = 6 1.Given 2.Distributive Property 3. 4. 5.
9
Proof Given:2(x – 3) + 4 = 10 Prove: x = 6 StatementsReasons 1.2(x – 3) + 4 = 10 2.2x – 6 + 4 = 10 3.2x – 2 = 10 4. 5. x = 6 1.Given 2.Distributive Property 3.Substitution 4. 5.
10
Proof Given:2(x – 3) + 4 = 10 Prove: x = 6 StatementsReasons 1.2(x – 3) + 4 = 10 2.2x – 6 + 4 = 10 3.2x – 2 = 10 4.2x = 12 5.x = 6 1.Given 2.Distributive Property 3.Substitution 4. 5.
11
Proof Given:2(x – 3) + 4 = 10 Prove: x = 6 StatementsReasons 1.2(x – 3) + 4 = 10 2.2x – 6 + 4 = 10 3.2x – 2 = 10 4.2x = 12 5.x = 6 1.Given 2.Distributive Property 3.Substitution 4.Add. Prop. of Equality 5.
12
Proof Given:2(x – 3) + 4 = 10 Prove: x = 6 StatementsReasons 1.2(x – 3) + 4 = 10 2.2x – 6 + 4 = 10 3.2x – 2 = 10 4.2x = 12 5.x = 6 1.Given 2.Distributive Property 3.Substitution 4.Add. Prop. of Equality 5. Division Prop. of Eq.
13
Proof Given:A-P-B on seg AB Prove: AP = AB - PB StatementsReasons 1. A-P-B on seg AB 2. · ?. AP = AB - PB 1. Given 2. · ?.
14
Proof Given:A-P-B on seg AB Prove: AP = AB - PB StatementsReasons 1. A-P-B on seg AB 2. · ?. AP = AB - PB 1. Given 2. Segment-Addition Postulate · ?.
15
Proof Given:A-P-B on seg AB Prove: AP = AB - PB StatementsReasons 1. A-P-B on seg AB 2. AP + PB = AB · ?. AP = AB – PB 1. Given 2. Segment-Addition Postulate · ?.
16
Proof Given:A-P-B on seg AB Prove: AP = AB - PB StatementsReasons 1. A-P-B on seg AB 2. AP + PB = AB 3. AP = AB – PB 1. Given 2. Segment-Addition Postulate 3.
17
Proof Given:A-P-B on seg AB Prove: AP = AB - PB StatementsReasons 1. A-P-B on seg AB 2. AP + PB = AB 3. AP = AB – PB 1. Given 2. Segment-Addition Postulate 3. Subtr. Prop. of Equality
18
Proof Given:MN > PQ Prove: MP > NQ StatementsReasons M N P Q
19
Proof Given:MN > PQ Prove: MP > NQ StatementsReasons 1. MN > PQ 2. ?. MP > NQ 1. Given 2. ?. M N P Q
20
Proof Given:MN > PQ Prove: MP > NQ StatementsReasons 1. MN > PQ 2. ?. MP > NQ 1. Given 2. Add’n prop of Inequality ?. M N P Q
21
Proof Given:MN > PQ Prove: MP > NQ StatementsReasons 1. MN > PQ 2. MN + NP > PQ + NP ?. MP > NQ 1. Given 2. Add’n prop of Inequality ?. M N P Q
22
Proof Given:MN > PQ Prove: MP > NQ StatementsReasons 1. MN > PQ 2. MN + NP > PQ + NP 3. MN + NP > NP + PQ ?. MP > NQ 1. Given 2. Add’n prop of Inequality 3. ?. M N P Q
23
Proof Given:MN > PQ Prove: MP > NQ StatementsReasons 1. MN > PQ 2. MN + NP > PQ + NP 3. MN + NP > NP + PQ ?. MP > NQ 1. Given 2. Add’n prop of Inequality 3. Commutative prop. of add’n ?. M N P Q
24
Proof Given:MN > PQ Prove: MP > NQ StatementsReasons 1. MN > PQ 2. MN + NP > PQ + NP 3. MN + NP > NP + PQ 4. MN + NP = MP and NP + PQ = NQ ?. MP > NQ 1. Given 2. Add’n prop of Inequality 3. Commutative prop. of add’n 4. ?. M N P Q
25
Proof Given:MN > PQ Prove: MP > NQ StatementsReasons 1. MN > PQ 2. MN + NP > PQ + NP 3. MN + NP > NP + PQ 4. MN + NP = MP and NP + PQ = NQ ?. MP > NQ 1. Given 2. Add’n prop of Inequality 3. Commutative prop. of add’n 4. Segment Addition Postulate ?. M N P Q
26
Proof Given:MN > PQ Prove: MP > NQ StatementsReasons 1. MN > PQ 2. MN + NP > PQ + NP 3. MN + NP > NP + PQ 4. MN + NP = MP and NP + PQ = NQ 5. MP > NQ 1. Given 2. Add’n prop of Inequality 3. Commutative prop. of add’n 4. Segment Addition Postulate 5. Substitution M N P Q
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.