Download presentation
Published byAbel Shaw Modified over 9 years ago
1
Controlling Risk Welcome to IST-456 Topic 9 – Controlling Risk
2
Objectives Upon completion of this chapter, you should be able to:
Recognize and select from the risk mitigation strategy options to control risk Evaluate risk controls and formulate a cost-benefit analysis using existing conceptual frameworks Explain how to maintain and perpetuate risk controls Describe the OCTAVE Method and other approaches to managing risk
3
Introduction To keep up with the competition, organizations must design and create a safe environment in which business processes and procedures can function This environment must maintain confidentiality and privacy and assure the integrity and availability of organizational data These objectives are met via the application of the principles of risk management In the early days of IT, its use was intended to give business a ‘competitive advantage’ However – today most organizations have integrated IT into their processes and the goal is not to lose advantage by failing to integrate the most current technologies and approaches – this is the concept of ‘competitive disadvantage’
4
Risk Control Strategies
An organization must choose one of four basic strategies to control risks Avoidance Applying safeguards that eliminate or reduce the remaining uncontrolled risks for the vulnerability Transference Shifting the risk to other areas or to outside entities Mitigation Reducing the impact if the vulnerability is exploited
5
Risk Control Strategies (cont’d.)
An organization must choose one of four basic strategies to control risks (cont’d.) Acceptance Understanding the consequences and accepting the risk without control or mitigation Acceptance is always the least desirable alternative.
6
Avoidance The risk control strategy that attempts to prevent the exploitation of the vulnerability Avoidance is accomplished through: Application of policy Application of training and education Countering threats Implementation of technical security controls and safeguards Application of policy allows all levels of management to mandate that certain procedures always be followed Training and education are intended to assure compliance with new or revised policies It may not always be possible to eliminate threats but it may be possible to limit exposure An example of a technical control would be use of a virtual private network for telecommuting employees
7
Transference The control approach that attempts to shift the risk to other assets, other processes, or other organizations May be accomplished by rethinking how services are offered Revising deployment models Outsourcing to other organizations Purchasing insurance Implementing service contracts with providers However – it is important that service level agreements and contracts explicitly detail how security is to be accomplished and that providers be certified For example – outsourcing customer data to a cloud provider does not eliminate your organizations primary responsibility for compliance with data protection laws
8
Mitigation The control approach that attempts to reduce the damage caused by the exploitation of vulnerability Using planning and preparation Depends upon the ability to detect and respond to an attack as quickly as possible Types of mitigation plans Disaster recovery plan (DRP) Incident response plan (IRP) Business continuity plan (BCP) Mitigation plans were covered in topic 3
9
Mitigation (cont’d.) Table 9-1 Summaries of mitigation plans
Source: Course Technology/Cengage Learning
10
Acceptance The choice to do nothing to protect an information asset
To accept the loss when it occurs This control, or lack of control, assumes that it may be a prudent business decision to examine the alternatives and conclude that the cost of protecting an asset does not justify the security expenditure for example – protecting a given server may cost $100,000 whereas replacing the server, its information and recovery costs may only total $50,000 – so the risk will be accepted and the funds used to mitigate risk elsewhere
11
Acceptance (cont.) Before using the acceptance strategy, the organization must: Determine the level of risk to the information asset Assess the probability of attack and the likelihood of a successful exploitation of a vulnerability Approximate the ARO of the exploit Estimate the potential loss from attacks Perform a thorough cost benefit analysis ARO – annual rate of occurrence
12
Acceptance (cont.) Before using the acceptance strategy, the organization must: (cont’d.) Evaluate controls using each appropriate type of feasibility Decide that the particular asset did not justify the cost of protection
13
Managing Risk Risk appetite (also known as risk tolerance)
The quantity and nature of risk that organizations are willing to accept As they evaluate the trade-offs between perfect security and unlimited accessibility The reasoned approach to risk is one that balances the expense (in terms of finance and the usability of information assets) against the possible losses if exploited An inherent danger is that some organizations may take on risk because they are ignorant of its existence or impact
14
Managing Risk (cont’d.)
Residual risk When vulnerabilities have been controlled as much as possible, there is often remaining risk that has not been completely removed, shifted, or planned for Residual Risk is a combined function of: Threats, vulnerabilities and assets, less the effects of the safeguards in place
15
Managing Risk (cont’d.)
The goal of information security is not to bring residual risk to zero Bring it in line with an organization’s risk appetite If decision makers have been informed of uncontrolled risks and the proper authority groups within the communities of interest decide to leave residual risk in place, then the information security program has accomplished its primary goal
16
Managing Risk (cont’d.)
Once a control strategy has been selected and implemented: The effectiveness of controls should be monitored and measured on an ongoing basis To determine its effectiveness and the accuracy of the estimate of the residual risk
17
Managing Risk (cont’d.)
Risk control involves selecting one of the four risk control strategies For the vulnerabilities present If the loss is within the range of losses the organization can absorb, or if the attacker’s gain is less than expected costs of the attack, the organization may choose to accept the risk Otherwise, one of the other control strategies will have to be selected
18
Managing Risk (cont’d.)
Figure 9-2 Risk-handling action points Source: Course Technology/Cengage Learning
19
Managing Risk (cont’d.)
Guidelines for risk control strategy selection When a vulnerability exists Implement security controls to reduce the likelihood of a vulnerability being exercised When a vulnerability can be exploited Apply layered controls to minimize the risk or prevent occurrence When the attacker’s potential gain is greater than the costs of attack Apply technical or managerial controls to increase the attacker’s cost, or reduce his gain
20
Managing Risk (cont’d.)
Guidelines for risk control strategy selection (cont’d.) When potential loss is substantial Apply design controls to limit the extent of the attack, thereby reducing the potential for loss at a minimum – each information asset-threat pair should have a documented control strategy that clearly identifies any residual risk that remains after the proposed strategy has been executed
21
Managing Risk (cont’d.)
Figure 9-3 Risk control cycle Source: Course Technology/Cengage Learning
22
Feasibility and Cost-Benefit Analysis
Before deciding on the strategy for a specific vulnerability All readily accessible information about the consequences of the vulnerability must be explored Ask “what are the advantages of implementing a control as opposed to the disadvantages of implementing the control?” cost avoidance is the money saved by avoiding, via the implementation of a control, the financial ramifications of an incident
23
Feasibility and Cost-Benefit Analysis (cont’d.)
There are a number of ways to determine the advantage or disadvantage of a specific control The primary means are based on the value of the information assets that it is designed to protect
24
Cost-Benefit Analysis
Economic feasibility The criterion most commonly used when evaluating a project that implements information security controls and safeguards Begin a cost-benefit analysis by: Evaluating the worth of the information assets to be protected and the loss in value if those information assets are compromised This decision-making process is called Cost-benefit analysis or economic feasibility study
25
Cost-Benefit Analysis (cont’d.)
As it is difficult to determine the value of information So it is also difficult to determine the cost of safeguarding it Factors that affect the cost of a safeguard Cost of development or acquisition of hardware, software, and services Training fees Cost of implementation Service and maintenance costs however, while difficult – it is not impossible Cost-benefit analysis is a powerful method used to determine relative risk and to prioritize controls and explain their need to management
26
Cost-Benefit Analysis (cont’d.)
The value to the organization of using controls to prevent losses associated with a specific vulnerability Usually determined by valuing the information assets exposed by the vulnerability and then determining how much of that value is at risk and how much risk there is for the asset This is expressed as the annualized loss expectancy (ALE)
27
Cost-Benefit Analysis (cont’d.)
Asset valuation The process of assigning financial value or worth to each information asset The value of information differs within and between organizations Based on the characteristics of information and the perceived value of that information Involves estimation of real and perceived costs associated with the design, development, installation, maintenance, protection, recovery, and defense against loss and litigation
28
Cost-Benefit Analysis (cont’d.)
Asset valuation components Value retained from the cost of creating the information asset Value retained from past maintenance of the information asset Value implied by the cost of replacing the information Value from providing the information Value acquired from the cost of protecting the information
29
Cost-Benefit Analysis (cont’d.)
Asset valuation components (cont’d.) Value to owners Value of intellectual property Value to adversaries Loss of productivity while the information assets are unavailable Loss of revenue while information assets are unavailable
30
Cost-Benefit Analysis (cont’d.)
An organization must be able to place a dollar value on each information asset it owns, based on: How much did it cost to create or acquire? How much would it cost to recreate or recover? How much does it cost to maintain? How much is it worth to the organization? How much is it worth to the competition?
31
Cost-Benefit Analysis (cont’d.)
Potential loss is that which could occur from the exploitation of vulnerability or a threat occurrence Ask these questions: What loss could occur, and what financial impact would it have? What would it cost to recover from the attack, in addition to the financial impact of damage? What is the single loss expectancy for each risk?
32
Cost-Benefit Analysis (cont’d.)
A single loss expectancy (SLE) The calculation of the value associated with the most likely loss from an attack SLE is based on the value of the asset and the expected percentage of loss that would occur from a particular attack SLE = asset value (AV) x exposure factor (EF) Where EF is the percentage loss that would occur from a given vulnerability being exploited This information is usually estimated Industry organizations can often help with these estimates example - asset value of a company Web site is 1,000,000 exposure factor from hacker defacement scenario is 0.10 (ten percent) SLE = $100,000
33
Cost-Benefit Analysis (cont’d.)
In most cases, the probability of a threat occurring is the probability of loss from an attack within a given time frame This value is commonly referred to as the annualized rate of occurrence (ARO) ALE = SLE * ARO in prior example – if the given hacker defacement is estimated to occur once every 2 years the ARO is 0.5 so the annualized Loss Expectancy is $50,000
34
Cost-Benefit Analysis (cont’d.)
CBA determines whether or not a control alternative is worth its associated cost CBAs may be calculated before a control or safeguard is implemented To determine if the control is worth implementing Or calculated after controls have been implemented and have been functioning for a time
35
Cost-Benefit Analysis (cont’d.)
Cost-benefit analysis formula CBA = ALE(prior) – ALE(post) – ACS ALE (prior to control) is the annualized loss expectancy of the risk before the implementation of the control ALE (post-control) is the ALE examined after the control has been in place for a period of time ACS is the annual cost of the safeguard If the prior ALE is $50,000, and the post ALE is determined to be $10,000 and the cost of the control is $10,000 then the CBA value is $30,000 since the CBA is positive, the control is worth implementing
36
Other Methods of Establishing Feasibility
Organizational feasibility analysis Examines how well the proposed information security alternatives will contribute to the operation of an organization Operational feasibility Addresses user and management acceptance and support Addresses the overall requirements of the organization’s stakeholders - an organization should not adopt a control that will hinder its ability to move in desired strategic directions - Operational feasibility is also known as behavioral feasability
37
Other Methods of Establishing Feasibility (cont’d.)
Technical feasibility Examines whether or not the organization has or can acquire the technology to implement and support the alternatives Political feasibility Defines what can and cannot occur based on the consensus and relationships between the communities of interest TF includes the skill level of IT and security staff PF may include budgetary considerations
38
Alternatives to Feasibility Analysis
Benchmarking Due care and due diligence Best business practices Gold standard Government recommendations Baseline
39
Recommended Risk Control Practices
Organizations typically look for a more straightforward method of implementing controls This preference has prompted an ongoing search for ways to design security architectures that go beyond the direct application of specific controls for specific information asset vulnerability This is in recognition of the problem is that implementing one control (say a firewall) may affect other asset-threat pairs (perhaps by lowering their ALE) such that it is difficult to arrive at a simple total
40
Qualitative and Hybrid Measures
Quantitative assessment Performs asset valuation with actual values or estimates May be difficult to assign specific values Qualitative assessment Use scales instead of specific estimates Hybrid assessment Tries to improve upon the ambiguity of qualitative measures without using an estimating process Hybird assessments use numerical scales that can be applied in a quantitative way
41
A Single Source Approach to Risk Management
The Operationally Critical Threat, Asset, and Vulnerability Evaluation (OCTAVE) Method Defines the essential components of a comprehensive, systematic, context-driven, self-directed information security risk evaluation an InfoSec risk evaluation methodology that allows organizations to balance the protection of critical information assets against the costs of providing protective and detection controls developed by Carnegie-Mellon University
42
A Single Source Approach to Risk Management (cont’d.)
The OCTAVE method (cont’d.) Allows an organization to make information-protection decisions based on risks to the confidentiality, integrity, and availability of critical information technology assets The operational or business units and the IT department work together to address the information security needs of the organization
43
The OCTAVE Methods Three variations of the OCTAVE method
The original OCTAVE method, (forms the basis for the OCTAVE body of knowledge) Was designed for larger organizations with 300 or more users OCTAVE-S For smaller organizations of about 100 users OCTAVE-Allegro A streamlined approach for information security assessment and assurance For more information:
44
Microsoft Risk Management Approach
Microsoft Corporation also promotes a risk management approach Four phases in the Microsoft InfoSec risk management process: Assessing risk Conducting decision support Implementing controls Measuring program effectiveness Microsoft asserts that risk management is not a stand-alone subject and should be part of a general governance program to allow the organizational general management community of interest to evaluate the organization’s operations and make better, more informed decisions
45
Microsoft Risk Management Approach (cont’d.)
Assessing Risk: Identification and prioritization of risks facing the organization Plan data gathering – discuss keys to success and preparation guidance Gather risk data – outline the data collection process and analysis Prioritize risks – outline prescriptive steps to qualify and quantify risks
46
Microsoft Risk Management Approach (cont’d.)
Conducting Decision Support: Identify and evaluate available controls Define functional requirements – create the necessary requirements to mitigate risks Select possible control solutions – outline approach to identify mitigation solutions Review solution – evaluate proposed controls against functional requirements
47
Microsoft Risk Management Approach (cont’d.)
Identify and evaluate available controls (cont’d.) Estimate risk reduction – endeavor to understand reduced exposure or probability of risks Estimate solution cost – evaluate direct and indirect costs associated with mitigation solutions Select mitigation strategy – complete cost-benefit analysis to identify the most cost-effective mitigation solution
48
Microsoft Risk Management Approach (cont’d.)
Implementing controls: deployment and operation of the controls selected from the cost-benefit analyses and other mitigating factors from the previous step Seek holistic approach – incorporate people, process, and technology in mitigation solution Organize by defense-in-depth – arrange mitigation solutions across the business
49
Microsoft Risk Management Approach (cont’d.)
Measuring program effectiveness: ongoing assessment of the effectiveness of the risk management program Develop risk scoreboard – understand risk posture and progress Measure program effectiveness – evaluate the risk management program for opportunities to improve
50
Figure A-1 Security Risk Management Guide
Microsoft Risk Management Approach (cont’d.) Figure A-1 Security Risk Management Guide Source: Course Technology/Cengage Learning
51
Microsoft Risk Management Approach (cont’d.)
Additional information is available at:
52
FAIR The Factor Analysis of Information Risk (FAIR) framework includes: A taxonomy for information risk Standard nomenclature for information risk terms A framework for establishing data collection criteria Measurement scales for risk factors A computational engine for calculating risk
53
FAIR (cont’d.) The Factor Analysis of Information Risk (FAIR) framework includes: (cont’d.) A modeling construct for analyzing complex risk scenarios See
54
FAIR (cont’d.) Basic FAIR analysis is comprised of ten steps in four stages Stage 1 - Identify scenario components 1. Identify the asset at risk 2. Identify the threat community under consideration Stage 2 - Evaluate loss event frequency 3. Estimate the probable threat event frequency 4. Estimate the threat capability (TCap)
55
FAIR (cont’d.) Stage 2 - Evaluate loss event frequency (cont’d.)
5. Estimate Control strength (CS) 6. Derive Vulnerability (Vuln) 7. Derive Loss Event Frequency (LEF) Stage 3 - Evaluate probable loss magnitude (PLM) 8. Estimate worst-case loss 9. Estimate probable loss
56
FAIR (cont’d.) Stage 4 - Derive and articulate Risk
Unlike other risk management frameworks, FAIR relies on the qualitative assessment of many risk components using scales with value ranges, for example very high to very low
57
FAIR (cont’d.) Figure 9-4 Factor analysis of information risk (FAIR)
Source: Course Technology/Cengage Learning (Based on concepts from Jack A. Jones)
58
ISO 27005 Standard for Information Security Risk Management
The ISO series includes a standard for the performance of Risk Management ISO 27005 See
59
ISO 27005 Standard for Information Security Risk Management (cont’d.)
The document includes a five-stage risk management methodology Information security risk assessment (ISRA) Information security risk treatment Information security risk acceptance Information security risk communication Information security risk monitoring and review
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.