Presentation is loading. Please wait.

Presentation is loading. Please wait.

A trial of incentives to attend adult literacy classes Carole Torgerson, Greg Brooks, Jeremy Miles, David Torgerson Classes randomised to incentive or.

Similar presentations


Presentation on theme: "A trial of incentives to attend adult literacy classes Carole Torgerson, Greg Brooks, Jeremy Miles, David Torgerson Classes randomised to incentive or."— Presentation transcript:

1 A trial of incentives to attend adult literacy classes Carole Torgerson, Greg Brooks, Jeremy Miles, David Torgerson Classes randomised to incentive or no incentive. Outcome variable: number of sessions attended.

2 Classes randomised to incentive or no incentive. Two groups of 14 classes. Labeled “X” and “Y” in this data set. Blinded for analysis. Group X: 77 students Group Y: 86 students

3 Outcome variable: number of sessions attended.

4 Compare mean number of sessions ignoring clustering:. ttest sessions, by(group) Two-sample t test with equal variances ------------------------------------------------------------------------------ Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval] ---------+-------------------------------------------------------------------- X | 70 6.685714.4177941 3.495516 5.852238 7.519191 Y | 82 5.280488.2991881 2.709263 4.685197 5.875778 ---------+-------------------------------------------------------------------- combined | 152 5.927632.2566817 3.164585 5.42048 6.434783 ---------+-------------------------------------------------------------------- diff | 1.405226.5037841.4097968 2.400656 ------------------------------------------------------------------------------ Degrees of freedom: 150 Ho: mean(X) - mean(Y) = diff = 0 Ha: diff 0 t = 2.7893 t = 2.7893 t = 2.7893 P |t| = 0.0060 P > t = 0.0030

5 Compare mean number of sessions ignoring clustering:. ttest sessions, by(group) Two-sample t test with equal variances ------------------------------------------------------------------------------ Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval] ---------+-------------------------------------------------------------------- X | 70 6.685714.4177941 3.495516 5.852238 7.519191 Y | 82 5.280488.2991881 2.709263 4.685197 5.875778 ---------+-------------------------------------------------------------------- combined | 152 5.927632.2566817 3.164585 5.42048 6.434783 ---------+-------------------------------------------------------------------- diff | 1.405226.5037841.4097968 2.400656 ------------------------------------------------------------------------------ Degrees of freedom: 150 Ho: mean(X) - mean(Y) = diff = 0 Ha: diff 0 t = 2.7893 t = 2.7893 t = 2.7893 P |t| = 0.0060 P > t = 0.0030 Stata version 8.

6 Compare mean number of sessions ignoring clustering:. ttest sessions, by(group) Two-sample t test with equal variances ------------------------------------------------------------------------------ Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval] ---------+-------------------------------------------------------------------- X | 70 6.685714.4177941 3.495516 5.852238 7.519191 Y | 82 5.280488.2991881 2.709263 4.685197 5.875778 ---------+-------------------------------------------------------------------- combined | 152 5.927632.2566817 3.164585 5.42048 6.434783 ---------+-------------------------------------------------------------------- diff | 1.405226.5037841.4097968 2.400656 ------------------------------------------------------------------------------ Degrees of freedom: 150 Ho: mean(X) - mean(Y) = diff = 0 Ha: diff 0 t = 2.7893 t = 2.7893 t = 2.7893 P |t| = 0.0060 P > t = 0.0030 P = 0.006 — a highly significant difference!

7 Compare mean number of sessions ignoring clustering:. ttest sessions, by(group) Two-sample t test with equal variances ------------------------------------------------------------------------------ Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval] ---------+-------------------------------------------------------------------- X | 70 6.685714.4177941 3.495516 5.852238 7.519191 Y | 82 5.280488.2991881 2.709263 4.685197 5.875778 ---------+-------------------------------------------------------------------- combined | 152 5.927632.2566817 3.164585 5.42048 6.434783 ---------+-------------------------------------------------------------------- diff | 1.405226.5037841.4097968 2.400656 ------------------------------------------------------------------------------ Degrees of freedom: 150 Ho: mean(X) - mean(Y) = diff = 0 Ha: diff 0 t = 2.7893 t = 2.7893 t = 2.7893 P |t| = 0.0060 P > t = 0.0030 P = 0.006 — a highly significant difference! But it is wrong — it ignores the clustering!

8 Compare mean number of sessions ignoring clustering, regression:. regress sessions group Source | SS df MS Number of obs = 152 -------------+------------------------------ F( 1, 150) = 7.78 Model | 74.5694526 1 74.5694526 Prob > F = 0.0060 Residual | 1437.63449 150 9.58422997 R-squared = 0.0493 -------------+------------------------------ Adj R-squared = 0.0430 Total | 1512.20395 151 10.0145957 Root MSE = 3.0958 ------------------------------------------------------------------------------ sessions | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- group | -1.405226.5037841 -2.79 0.006 -2.400656 -.4097968 _cons | 8.090941.8152001 9.93 0.000 6.480183 9.701699 ------------------------------------------------------------------------------ P = 0.006 — identical to two sample t method. It is still wrong — it ignores the clustering!

9 Compare mean number of sessions including clustering, two sample t method on cluster means:. ttest sessions, by(group) Two-sample t test with equal variances ------------------------------------------------------------------------------ Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval] ---------+-------------------------------------------------------------------- 1 | 14 6.69932.7457716 2.790422 5.088178 8.310461 2 | 14 5.189229.3974616 1.487165 4.330565 6.047893 ---------+-------------------------------------------------------------------- combined | 28 5.944274.439363 2.32489 5.042776 6.845773 ---------+-------------------------------------------------------------------- diff | 1.510091.8450746 -.226985 3.247166 ------------------------------------------------------------------------------ Degrees of freedom: 26 Ho: mean(1) - mean(2) = diff = 0 Ha: diff 0 t = 1.7869 t = 1.7869 t = 1.7869 P |t| = 0.0856 P > t = 0.0428 P = 0. 0856 — not significant.

10 Compare mean number of sessions including clustering, two sample t method on cluster means:. ttest sessions, by(group) Two-sample t test with equal variances ------------------------------------------------------------------------------ Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval] ---------+-------------------------------------------------------------------- 1 | 14 6.69932.7457716 2.790422 5.088178 8.310461 2 | 14 5.189229.3974616 1.487165 4.330565 6.047893 ---------+-------------------------------------------------------------------- combined | 28 5.944274.439363 2.32489 5.042776 6.845773 ---------+-------------------------------------------------------------------- diff | 1.510091.8450746 -.226985 3.247166 ------------------------------------------------------------------------------ Degrees of freedom: 26 Ho: mean(1) - mean(2) = diff = 0 Ha: diff 0 t = 1.7869 t = 1.7869 t = 1.7869 P |t| = 0.0856 P > t = 0.0428 P = 0. 0856 — not significant. Almost correct — it takes the data structure into account, but not the variation in class size.

11 Compare number of sessions including clustering, two sample t method on cluster means Almost correct — it takes the data structure into account, but not the variation in class size.

12 Compare mean number of sessions including clustering, regression method, weighted by class size:. regress session group [aweight=learner] (sum of wgt is 1.6300e+02) Source | SS df MS Number of obs = 28 -------------+------------------------------ F( 1, 26) = 2.77 Model | 13.3075302 1 13.3075302 Prob > F = 0.1082 Residual | 124.992713 26 4.80741204 R-squared = 0.0962 -------------+------------------------------ Adj R-squared = 0.0615 Total | 138.300243 27 5.12223123 Root MSE = 2.1926 ------------------------------------------------------------------------------ sessions | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- group | -1.380902.8299839 -1.66 0.108 -3.086958.3251548 _cons | 8.00502 1.33388 6.00 0.000 5.26319 10.74685 ------------------------------------------------------------------------------ P = 0. 108 — not significant. Correct — it takes the data structure into account, including the variation in class size.

13 Compare individual number of sessions including clustering, robust standard error method (Huber-White-sandwich method):. regress sessions group, cluster(class) Regression with robust standard errors Number of obs = 152 F( 1, 27) = 2.79 Prob > F = 0.1062 R-squared = 0.0493 Number of clusters (class) = 28 Root MSE = 3.0958 ------------------------------------------------------------------------------ | Robust sessions | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- group | -1.405226.8407909 -1.67 0.106 -3.130387.319934 _cons | 8.090941 1.535933 5.27 0.000 4.939466 11.24242 ------------------------------------------------------------------------------ P = 0.106 — not significant. Correct — it takes the data structure into account. Very similar estimate and P value to method using means.

14 Compare individual number of sessions including clustering, robust standard error method (Huber-White-sandwich method). Correct — it takes the data structure into account. Very similar estimate and P value to method using means.

15 Compare individual number of sessions including clustering, robust standard error method (Huber-White-sandwich method. Correct — it takes the data structure into account. Very similar estimate and P value to method using means. I can do that using SPSS. So what is the advantage?

16 Compare individual number of sessions including clustering, robust standard error method (Huber-White-sandwich method): Correct — it takes the data structure into account. Very similar estimate and P value to method using means. I can do that using SPSS. So what is the advantage? We can use subject-level covariates.

17 Mid-score = reading score before randomisation.

18 Compare individual number of sessions including clustering, robust standard error method, adjusting for mid-score:. regress sessions group midscl, cluster(class) Regression with robust standard errors Number of obs = 152 F( 2, 27) = 11.91 Prob > F = 0.0002 R-squared = 0.1956 Number of clusters (class) = 28 Root MSE = 2.8572 ------------------------------------------------------------------------------ | Robust sessions | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- group | -1.533053.6128085 -2.50 0.019 -2.790433 -.2756742 midscl | -.049151.0104713 -4.69 0.000 -.0706363 -.0276658 _cons | 10.56678 1.304614 8.10 0.000 7.889936 13.24363 ------------------------------------------------------------------------------ P = 0.019 — significant. Correct — it takes the data structure into account.

19 Compare individual number of sessions including clustering, robust standard error method, adjusting for mid-score:. regress sessions group midscl, cluster(class) Regression with robust standard errors Number of obs = 152 F( 2, 27) = 11.91 Prob > F = 0.0002 R-squared = 0.1956 Number of clusters (class) = 28 Root MSE = 2.8572 ------------------------------------------------------------------------------ | Robust sessions | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- group | -1.533053.6128085 -2.50 0.019 -2.790433 -.2756742 midscl | -.049151.0104713 -4.69 0.000 -.0706363 -.0276658 _cons | 10.56678 1.304614 8.10 0.000 7.889936 13.24363 ------------------------------------------------------------------------------ P = 0.019 — significant. Correct — it takes the data structure into account. Adjustment produces true significant difference.


Download ppt "A trial of incentives to attend adult literacy classes Carole Torgerson, Greg Brooks, Jeremy Miles, David Torgerson Classes randomised to incentive or."

Similar presentations


Ads by Google