Presentation is loading. Please wait.

Presentation is loading. Please wait.

Network Layer#1#1 Network Layer: Routing Goals: r understand principles behind network layer services: m routing (path selection) m dealing with scale.

Similar presentations


Presentation on theme: "Network Layer#1#1 Network Layer: Routing Goals: r understand principles behind network layer services: m routing (path selection) m dealing with scale."— Presentation transcript:

1 Network Layer#1#1 Network Layer: Routing Goals: r understand principles behind network layer services: m routing (path selection) m dealing with scale m how a router works Previous two lectures r instantiation and implementation in the Internet Overview: r network layer services r routing principle: m path selection r hierarchical routing r IP r Internet routing protocols: m intra-domain m inter-domain

2 Network Layer#2#2 Network layer functions r transport packet from sending to receiving hosts r network layer protocols in every host, router three important functions: r path determination: route taken by packets from source to dest. Routing algorithms r switching: move packets from router’s input to appropriate router output (prev. lect.) r call setup: some network architectures require router call setup along path before data flows network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical application transport network data link physical application transport network data link physical

3 Network Layer#3#3 Network service model Q: What service model for “channel” transporting packets from sender to receiver? r guaranteed bandwidth? r preservation of inter-packet timing (no jitter)? r loss-free delivery? r in-order delivery? r congestion feedback to sender? ? ? ? virtual circuit or datagram? The most important abstraction provided by network layer: service abstraction

4 Network Layer#4#4 Virtual Circuits (VC) r call setup, teardown for each call before data can flow r each packet carries VC identifier (not destination host ID) r every router on source-dest path s maintain “state” for each passing connection r link, router resources (bandwidth, buffers) may be allocated to VC m to get circuit-like performance. “source-to-dest path behaves much like telephone circuit” m performance-wise m network actions along source-to-dest path

5 Network Layer#5#5 Virtual circuits: signaling protocols r used to setup, maintain teardown VC r used in ATM, frame-relay, X.25 r not used in today’s Internet m Cisco’s MPLS application transport network data link physical application transport network data link physical 1. Initiate call 2. incoming call 3. Accept call 4. Call connected 5. Data flow begins 6. Receive data

6 Network Layer#6#6 Datagram networks: the Internet model r no call setup at network layer r routers: no state about end-to-end connections m no network-level concept of “connection” r packets typically routed using destination host ID m packets between same source-dest pair may take different paths application transport network data link physical application transport network data link physical 1. Send data 2. Receive data

7 Network Layer#7#7 Network layer service models: Network Architecture Internet ATM Service Model best effort CBR VBR ABR UBR Bandwidth none constant rate guaranteed avg. rate guaranteed minimum none Loss no yes no Order no yes Timing no yes no Congestion feedback no (inferred via loss) no congestion no congestion yes no Guarantees ? r Internet model being extended: Intserv, Diffserv

8 Network Layer#8#8 Datagram or VC network: why? Internet (Datagram) r data exchange among computers m “elastic” service, no strict timing req. r “smart” end systems (computers) m can adapt, perform control, error recovery m simple inside network, complexity at “edge” r many link types m different characteristics m uniform service difficult ATM (VC) r evolved from telephony r human conversation: m strict timing, reliability requirements m need for guaranteed service r “dumb” end systems m telephones m complexity inside network r VC Benefits: m Fast forwarding m Traffic Engineering.

9 Network Layer#9#9 Routing Graph abstraction for routing algorithms: r graph nodes are routers r graph edges are physical links m link cost: delay, $ cost, or congestion level m single cost Goal: determine “good” path (sequence of routers) thru network from source to dest. Routing protocol A E D CB F 2 2 1 3 1 1 2 5 3 5 r “good” path: m typically means minimum cost path m other def’s possible

10 Network Layer#10 Routing Algorithm classification Global or decentralized information? Global: r all routers have complete topology, link cost info r “link state” algorithms Decentralized: r router knows physically- connected neighbors, link costs to neighbors r iterative process of computation, exchange of info with neighbors r “distance vector” algorithms Static or dynamic? Static: r routes change slowly over time Dynamic: r routes change more quickly m periodic update m in response to link cost changes

11 Network Layer#11 A Link-State Routing Algorithm Dijkstra’s algorithm r net topology, link costs known to all nodes m accomplished via “link state broadcast” m all nodes have same info r computes least cost paths from one node (“source”) to all other nodes m gives routing table for that node r iterative: after k iterations, know least cost path to k dest.’s Notation:  c(i,j): link cost from node i to j. cost infinite if not direct neighbors  D(v): current value of cost of path from source to dest. V  p(v): predecessor node along path from source to v, that is next v  N: set of nodes whose least cost path definitively known

12 Network Layer#12 Dijsktra’s Algorithm 1 Initialization: 2 N = {A} 3 for all nodes v 4 if v adjacent to A 5 then D(v) = c(A,v) 6 else D(v) = infty 7 8 Loop 9 find w not in N such that D(w) is a minimum 10 add w to N 11 update D(v) for all v adjacent to w and not in N: 12 D(v) = min( D(v), D(w) + c(w,v) ) 13 /* new cost to v is either old cost to v or known 14 shortest path cost to w plus cost from w to v */ 15 until all nodes in N

13 Network Layer#13 Dijkstra’s algorithm: example Step 0 1 2 3 4 5 start N A AD ADE ADEB ADEBC ADEBCF D(B),p(B) 2,A D(C),p(C) 5,A 4,D 3,E D(D),p(D) 1,A D(E),p(E) infinity 2,D D(F),p(F) infinity 4,E A E D CB F 2 2 1 3 1 1 2 5 3 5

14 Network Layer#14 Dijkstra’s algorithm, discussion Algorithm complexity: n nodes r each iteration: need to check all nodes, w, not in N r n(n+1)/2 comparisons: O(n 2 ) m more efficient implementations possible: O(nlogn) Oscillations possible: r e.g., link cost = amount of carried traffic A D C B 1 1+e e 0 e 1 1 0 0 A D C B 2+e 0 0 0 1+e 1 A D C B 0 2+e 1+e 1 0 0 A D C B 2+e 0 0 0 1+e 1 initially … recompute routing … recompute

15 Network Layer#15 Distance Vector Routing Algorithm iterative: r continues until no nodes exchange info. r self-terminating: no “signal” to stop asynchronous: r nodes need not exchange info/iterate in lock step! distributed: r each node communicates only with directly-attached neighbors Distance Table data structure r each node has its own r row for each possible destination r column for each directly- attached neighbor to node r example: in node X, for dest. Y via neighbor Z: D (Y,Z) X distance from X to Y, via Z as next hop c(X,Z) + min {D (Y,w)} Z w = =

16 Network Layer#16 Distance Table: example A E D CB 7 8 1 2 1 2 D () A B C D A1764A1764 B 14 8 9 11 D5542D5542 E cost to destination via destination D (C,D) E c(E,D) + min {D (C,w)} D w = = 2+2 = 4 D (A,D) E c(E,D) + min {D (A,w)} D w = = 2+3 = 5 D (A,B) E c(E,B) + min {D (A,w)} B w = = 8+6 = 14 loop! (why not 15?)

17 Network Layer#17 Distance table gives routing table D () A B C D A1764A1764 B 14 8 9 11 D5542D5542 E cost to destination via destination ABCD ABCD A,1 D,5 D,4 D,2 Outgoing link to use, cost destination Distance table Routing table

18 Network Layer#18 Distance Vector Routing: overview Iterative, asynchronous: each local iteration caused by: r local link cost change r message from neighbor: its least cost path change from neighbor Distributed: r each node notifies neighbors only when its least cost path to any destination changes m neighbors then notify their neighbors if necessary wait for (change in local link cost of msg from neighbor) recompute distance table if least cost path to any dest has changed, notify neighbors Each node:

19 Network Layer#19 Distance Vector Algorithm: 1 Initialization: 2 for all adjacent nodes v: 3 D X (*,v) = infty /* the * operator means "for all rows" */ 4 D X (v,v) = c(X,v) 5 for all destinations, y 6 send min w D X (y,w) to each neighbor /* w over all X's neighbors */ At all nodes, X:

20 Network Layer#20 Distance Vector Algorithm (cont.): 8 loop 9 wait (until a link cost change to neighbor V 10 or until receive update from neighbor V) 11 12 if (c(X,V) changes by d) 13 /* change cost to all dest's via neighbor v by d */ 14 /* note: d could be positive or negative */ 15 for all destinations y: D X (y,V) = D X (y,V) + d 16 17 else if (update received from V wrt destination Y) 18 /* shortest path from V to some Y has changed */ 19 /* V has sent a new value for its min w D V (Y,w) */ 20 /* call this received new value is "newval" */ 21 for the single destination y: D (Y,V) = c(X,V) + newval 22 23 if a new min w D X (Y,w) for any destination Y 24 send new value of min w D X (Y,w) to all neighbors 25 26 forever X

21 Network Layer#21 Distance Vector Algorithm: example X Z 1 2 7 Y D (Y,Z) X c(X,Z) + min {D (Y,w)} w = = 7+1 = 8 Z D (Z,Y) X c(X,Y) + min {D (Z,w)} w = = 2+1 = 3 Y

22 Network Layer#22 Distance Vector Algorithm: example X Z 1 2 7 Y

23 Network Layer#23 Distance Vector: link cost changes Link cost changes: r node detects local link cost change r updates distance table (line 15) r if cost change in least cost path, notify neighbors (lines 23,24) X Z 1 4 50 Y 1 algorithm terminates “good news travels fast”

24 Network Layer#24 Distance Vector: link cost changes Link cost changes: r good news travels fast r bad news travels slow - “count to infinity” problem! X Z 1 4 50 Y 60 algorithm continues on!

25 Network Layer#25 Distance Vector: poisoned reverse If Z routes through Y to get to X : r Z tells Y its (Z’s) distance to X is infinite (so Y won’t route to X via Z) r will this completely solve count to infinity problem? X Z 1 4 50 Y 60 algorithm terminates

26 Network Layer#26 Comparison of LS and DV algorithms Message complexity r LS: with n nodes, E links, O(nE) msgs sent r DV: exchange between neighbors only m larger msgs m convergence time varies Speed of Convergence r LS: requires O(nE) msgs m may have oscillations r DV: convergence time varies m may be routing loops m count-to-infinity problem Robustness: what happens if router malfunctions? LS: m node can advertise incorrect link cost m each node computes only its own table DV: m DV node can advertise incorrect path cost m each node’s table used by others error propagate thru network

27 Network Layer#27 Hierarchical Routing scale: with 50 million destinations: r can’t store all dest’s in routing tables! r routing table exchange would swamp links! administrative autonomy r internet = network of networks r each network admin may want to control routing in its own network Our routing study thus far - idealization r all routers identical r network “flat” … not true in practice

28 Network Layer#28 Hierarchical Routing r aggregate routers into regions, “autonomous systems” (AS) r routers in same AS run same routing protocol m “intra-AS” routing protocol m routers in different AS can run different intra- AS routing protocol r special routers in AS r run intra-AS routing protocol with all other routers in AS r also responsible for routing to destinations outside AS m run inter-AS routing protocol with other gateway routers gateway routers

29 Network Layer#29 Intra-AS and Inter-AS routing Gateways: perform inter-AS routing amongst themselves perform intra-AS routers with other routers in their AS inter-AS, intra-AS routing in gateway A.c network layer link layer physical layer a b b a a C A B d A.a A.c C.b B.a c b c

30 Network Layer#30 Intra-AS and Inter-AS routing Host h2 a b b a a C A B d c A.a A.c C.b B.a c b Host h1 Intra-AS routing within AS A Inter-AS routing between A and B Intra-AS routing within AS B r We’ll examine specific inter-AS and intra-AS Internet routing protocols shortly

31 Network Layer#31 The Internet Network layer routing table Host, router network layer functions: Routing protocols path selection RIP, OSPF, BGP IP protocol addressing conventions datagram format packet handling conventions ICMP protocol error reporting router “signaling” Transport layer: TCP, UDP Link layer physical layer Network layer

32 Network Layer#32 IP Addressing: introduction r IP address: 32-bit identifier for host, router interface r interface: connection between host, router and physical link m router’s typically have multiple interfaces m host may have multiple interfaces m IP addresses associated with interface, not host, or router 223.1.1.1 223.1.1.2 223.1.1.3 223.1.1.4 223.1.2.9 223.1.2.2 223.1.2.1 223.1.3.2 223.1.3.1 223.1.3.27 223.1.1.1 = 11011111 00000001 00000001 00000001 223 111

33 Network Layer#33 IP Addressing r IP address: m network part high order bits m host part low order bits r What’s a network ? (from IP address perspective) m device interfaces with same network part of IP address m can physically reach each other without intervening router 223.1.1.1 223.1.1.2 223.1.1.3 223.1.1.4 223.1.2.9 223.1.2.2 223.1.2.1 223.1.3.2 223.1.3.1 223.1.3.27 network consisting of 3 IP networks (for IP addresses starting with 223, first 24 bits are network address) LAN

34 Network Layer#34 IP Addressing How to find the networks? r Detach each interface from router, host r create “islands of isolated networks 223.1.1.1 223.1.1.3 223.1.1.4 223.1.2.2 223.1.2.1 223.1.2.6 223.1.3.2 223.1.3.1 223.1.3.27 223.1.1.2 223.1.7.0 223.1.7.1 223.1.8.0223.1.8.1 223.1.9.1 223.1.9.2 Interconnected system consisting of six networks

35 Network Layer#35 IP Addresses 0 network host 10 network host 110 networkhost 1110 multicast address A B C D class 1.0.0.0 to 127.255.255.255 128.0.0.0 to 191.255.255.255 192.0.0.0 to 223.255.255.255 224.0.0.0 to 239.255.255.255 32 bits given notion of “network”, let’s re-examine IP addresses: “class-full” addressing:

36 Network Layer#36 IP addressing: CIDR r classful addressing: m inefficient use of address space, address space exhaustion m e.g., class B net allocated enough addresses for 65K hosts, even if only 2K hosts in that network r CIDR: Classless InterDomain Routing m network portion of address of arbitrary length m address format: a.b.c.d/x, where x is # bits in network portion of address 11001000 00010111 00010000 00000000 network part host part 200.23.16.0/23

37 Network Layer#37 IP addresses: how to get one? Hosts (host portion): r hard-coded by system admin in a file r DHCP: Dynamic Host Configuration Protocol: dynamically get address: “plug-and-play” m host broadcasts “DHCP discover” msg m DHCP server responds with “DHCP offer” msg m host requests IP address: “DHCP request” msg m DHCP server sends address: “DHCP ack” msg m The common practice in LAN and home access (why?)

38 Network Layer#38 IP addresses: how to get one? Network (network portion): r get allocated portion of ISP’s address space: ISP's block 11001000 00010111 00010000 00000000 200.23.16.0/20 Organization 0 11001000 00010111 00010000 00000000 200.23.16.0/23 Organization 1 11001000 00010111 00010010 00000000 200.23.18.0/23 Organization 2 11001000 00010111 00010100 00000000 200.23.20.0/23... ….. …. …. Organization 7 11001000 00010111 00011110 00000000 200.23.30.0/23

39 Network Layer#39 Hierarchical addressing: route aggregation “Send me anything with addresses beginning 200.23.16.0/20” 200.23.16.0/23200.23.18.0/23200.23.30.0/23 Fly-By-Night-ISP Organization 0 Organization 7 Internet Organization 1 ISPs-R-Us “Send me anything with addresses beginning 199.31.0.0/16” 200.23.20.0/23 Organization 2...... Hierarchical addressing allows efficient advertisement of routing information:

40 Network Layer#40 Hierarchical addressing: more specific routes ISPs-R-Us has a more specific route to Organization 1 “Send me anything with addresses beginning 200.23.16.0/20” 200.23.16.0/23200.23.18.0/23200.23.30.0/23 Fly-By-Night-ISP Organization 0 Organization 7 Internet Organization 1 ISPs-R-Us “Send me anything with addresses beginning 199.31.0.0/16 or 200.23.18.0/23” 200.23.20.0/23 Organization 2......

41 Network Layer#41 IP addressing: the last word... Q: How does an ISP get block of addresses? A: ICANN: Internet Corporation for Assigned Names and Numbers m allocates addresses m manages DNS m assigns domain names, resolves disputes

42 Network Layer#42 Getting a datagram from source to dest. 223.1.1.1 223.1.1.2 223.1.1.3 223.1.1.4 223.1.2.9 223.1.2.2 223.1.2.1 223.1.3.2 223.1.3.1 223.1.3.27 A B E IP datagram: misc fields source IP addr dest IP addr data r datagram remains unchanged, as it travels source to destination r addr fields of interest here m mainly dest. IP addr Dest. Net. next router Nhops 223.1.1 1 223.1.2 223.1.1.4 2 223.1.3 223.1.1.4 2 routing table in A

43 Network Layer#43 Getting a datagram from source to dest. 223.1.1.1 223.1.1.2 223.1.1.3 223.1.1.4 223.1.2.9 223.1.2.2 223.1.2.1 223.1.3.2 223.1.3.1 223.1.3.27 A B E Starting at A, given IP datagram addressed to B: r look up net. address of B r find B is on same net. as A r link layer will send datagram directly to B inside link-layer frame m B and A are directly connected Dest. Net. next router Nhops 223.1.1 1 223.1.2 223.1.1.4 2 223.1.3 223.1.1.4 2 misc fields 223.1.1.1223.1.1.3 data

44 Network Layer#44 Getting a datagram from source to dest. 223.1.1.1 223.1.1.2 223.1.1.3 223.1.1.4 223.1.2.9 223.1.2.2 223.1.2.1 223.1.3.2 223.1.3.1 223.1.3.27 A B E Dest. Net. next router Nhops 223.1.1 1 223.1.2 223.1.1.4 2 223.1.3 223.1.1.4 2 Starting at A, dest. E: r look up network address of E r E on different network m A, E not directly attached r routing table: next hop router to E is 223.1.1.4 r link layer sends datagram to router 223.1.1.4 inside link- layer frame r datagram arrives at 223.1.1.4 r continued….. misc fields 223.1.1.1223.1.2.2 data

45 Network Layer#45 Getting a datagram from source to dest. 223.1.1.1 223.1.1.2 223.1.1.3 223.1.1.4 223.1.2.9 223.1.2.2 223.1.2.1 223.1.3.2 223.1.3.1 223.1.3.27 A B E Arriving at 223.1.4, destined for 223.1.2.2 r look up network address of E r E on same network as router’s interface 223.1.2.9 m router, E directly attached r link layer sends datagram to 223.1.2.2 inside link-layer frame via interface 223.1.2.9 r datagram arrives at 223.1.2.2!!! (hooray!) misc fields 223.1.1.1223.1.2.2 data network router Nhops interface 223.1.1 - 1 223.1.1.4 223.1.2 - 1 223.1.2.9 223.1.3 - 1 223.1.3.27 Dest. next

46 Network Layer#46 IP datagram format ver length 32 bits data (variable length, typically a TCP or UDP segment) 16-bit identifier Internet checksum time to live 32 bit source IP address IP protocol version number header length (bytes) max number remaining hops (decremented at each router) for fragmentation/ reassembly total datagram length (bytes) upper layer protocol to deliver payload to head. len type of service “type” of data flgs fragment offset upper layer 32 bit destination IP address Options (if any) E.g. timestamp, record route taken, specify list of routers to visit.

47 Network Layer#47 Routing in the Internet r The Global Internet consists of Autonomous Systems (AS) interconnected with each other: m Stub AS: small corporation m Multihomed AS: large corporation (no transit) m Transit AS: provider r Two-level routing: m Intra-AS: administrator is responsible for choice m Inter-AS: unique standard

48 Network Layer#48 Internet AS Hierarchy Inter-AS border (exterior gateway) routers Intra-AS interior (gateway) routers

49 Network Layer#49 Intra-AS Routing r Also known as Interior Gateway Protocols (IGP) r Most common IGPs: m RIP: Routing Information Protocol m OSPF: Open Shortest Path First m IGRP: Interior Gateway Routing Protocol (Cisco propr.)

50 Network Layer#50 RIP ( Routing Information Protocol) r Distance vector algorithm r Included in BSD-UNIX Distribution in 1982 r Distance metric: # of hops (max = 15 hops) m why? r Distance vectors: exchanged every 30 sec via Response Message (also called advertisement) r Each advertisement: route to up to 25 destination nets

51 Network Layer#51 RIP (Routing Information Protocol) Destination Network Next Router Num. of hops to dest. wA2 yB2 zB7 x--1 ….…..... w xy z A C D B Routing table in D

52 Network Layer#52 RIP: Link Failure and Recovery If no advertisement heard after 180 sec --> neighbor/link declared dead m routes via neighbor invalidated m new advertisements sent to neighbors m neighbors in turn send out new advertisements (if tables changed) m link failure info quickly propagates to entire net m poison reverse used to prevent ping-pong loops (infinite distance = 16 hops)

53 Network Layer#53 OSPF (Open Shortest Path First) r “open”: publicly available r Uses Link State algorithm m LS packet dissemination m Topology map at each node m Route computation using Dijkstra’s algorithm r OSPF advertisement carries one entry per neighbor router r Advertisements disseminated to entire AS (via flooding)

54 Network Layer#54 OSPF “advanced” features (not in RIP) r Security: all OSPF messages authenticated (to prevent malicious intrusion); TCP connections used r Multiple same-cost paths allowed m only one path in RIP r For each link, multiple cost metrics for different ToS (eg, satellite link cost set “low” for best effort; high for real time) r Integrated uni- and multicast support: m Multicast OSPF (MOSPF) uses same topology data base as OSPF r Hierarchical OSPF in large domains.

55 Network Layer#55 Hierarchical OSPF

56 Network Layer#56 Hierarchical OSPF r Two-level hierarchy: local area, backbone. m Link-state advertisements only in area m each nodes has detailed area topology; only know direction (shortest path) to nets in other areas. r Area border routers: “summarize” distances to nets in own area, advertise to other Area Border routers. r Backbone routers: run OSPF routing limited to backbone. r Boundary routers: connect to other ASs.

57 Network Layer#57 IGRP (Interior Gateway Routing Protocol) r CISCO proprietary; successor of RIP (mid 80s) r Distance Vector, like RIP r several cost metrics (delay, bandwidth, reliability, load etc) r uses TCP to exchange routing updates r Loop-free routing via Distributed Updating Alg. (DUAL) based on diffused computation

58 Network Layer#58 Inter-AS routing

59 Network Layer#59 Internet inter-AS routing: BGP r BGP (Border Gateway Protocol): the de facto standard r Path Vector protocol: m similar to Distance Vector protocol m each Border Gateway broadcast to neighbors (peers) entire path (I.e, sequence of ASs) to destination m E.g., Gateway X may send its path to dest. Z: Path (X,Z) = X,Y1,Y2,Y3,…,Z

60 Network Layer#60 Internet inter-AS routing: BGP Suppose: gateway X send its path to peer gateway W r W may or may not select path offered by X m cost, policy (don’t route via competitors AS), loop prevention reasons. r If W selects path advertised by X, then: Path (W,Z) = W, Path (X,Z) r Note: X can control incoming traffic by controlling its route advertisements to peers: m e.g., don’t want to route traffic to Z -> don’t advertise any routes to Z

61 Network Layer#61 Internet inter-AS routing: BGP r BGP messages exchanged using TCP. r BGP messages: m OPEN: opens TCP connection to peer and authenticates sender m UPDATE: advertises new path (or withdraws old) m KEEPALIVE keeps connection alive in absence of UPDATES; also ACKs OPEN request m NOTIFICATION: reports errors in previous msg; also used to close connection

62 Network Layer#62 Why different Intra- and Inter-AS routing ? Policy: r Inter-AS: admin wants control over how its traffic routed, who routes through its net. r Intra-AS: single admin, so no policy decisions needed Scale: r hierarchical routing saves table size, reduced update traffic Performance: r Intra-AS: can focus on performance r Inter-AS: policy may dominate over performance


Download ppt "Network Layer#1#1 Network Layer: Routing Goals: r understand principles behind network layer services: m routing (path selection) m dealing with scale."

Similar presentations


Ads by Google