Download presentation
Presentation is loading. Please wait.
1
Hopefully a clearer version of Neural Network
2
With Actual Weights
3
I1 O1 H1 H2I2 W1 W2 0 0 1 1
4
Inputs 1 and 0 Target output {1}
5
Hidden Layer Computation Xi =iW1 = 1 * 1 + 0 * -1 = 1, 1 * -1 + 0 * 1 = -1 = { 1 - 1} = {Xi1,Xi2} = Xi
6
h = F(X) h1 = F(Xi1) = F(1) h2 = F(Xi2) = F(-1)
7
I1 O1 H1 H2I2 W1 W2 0 0 1 1 1 0 0.73 0.27
8
Next Output
9
Output Layer Computation X = hW2 = 0.73 * -1 + 0.27 * 0 = -0.73, { -0.73 } = X
10
O = F(X) O1 = F(X1) O2 = F(X2)
11
I1 O1 H1 H2I2 W1 W2 0 0 1 1 1 0 0.73 0.27
12
I1 O1 H1 H2I2 W1 W2 0 0 1 1 1 0 0.73 0.27
13
I1 O1 H1 H2I2 W1 W2 0 0 1 1 1 0 0.73 0.27 0.325
14
Error D= Output(1 – Output)(Target – Output) Target T1 = 1, O1 = 0.325 = 0.33 d1 = 0.33( 1 -0.33)(1 -0.33 ) = 0.33 (0.67)(0.67) = 0.148
15
Weight Adjustment △ W2t = α hd + Θ △ W2t-1 where α = 1 Time t = 1 so no previous time
16
Weight Adjustments
17
Weight Change
18
Equals
20
Putting these new weights in the diagram To get
21
I1 O1 H1 H2I2 W1 W2 0.04 -0.891 0 1 1 1 0 0.73 0.27 0.325
22
Next Calculate Change on W1 layer weights
23
the next error
24
What is this Output is O1 So k = {1} So if i = 1
26
I1 O1 H1 H2I2 W1 W2 0.04 -0.891 0 1 1 1 0 0.73 0.27 0.325
27
This equals e1 = (h1(1-h1)W11 D1 e2 = (h2(1-h2)) W21 D1 d1 = 0.15 e1 = (0.73(1-0.73))( -1* 0.15 ) e2 =( 0.27(1-0.27)) (0 *0.15 ) e1 = (0.73(0.27)( -0.15)) e2 =( 0.27(0.73)) (0) e1 = -0.03 e2 = 0
28
Weight Adjustment △ W1t = α Ie + Θ △ W2t-1 where α = 1
29
Weight Adjustment
30
Existing W1
31
Weight Change W1
32
New W1
33
Changing Net
34
I1 O1 H1 H2I2 W1 W2 0.04 -0.891 0 0.97 1 1 0 0.73 0.27 0.325
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.