Download presentation
Presentation is loading. Please wait.
1
Set & Bit-Vector Discrete Mathematics and Its Applications Baojian Hua bjhua@ustc.edu.cn
2
Set
3
Set Interface signature type set type X set newSet (); int setSize (set s); void setInsert (set s, X x); set setUnion (set s1, set s2); … end
4
Interface in C #ifndef SET_H #define SET_H typedef struct set *set; // type set typedef void *poly; // type X set newSet (); int setSize (set s); void setInsert (set s, poly x); set setUnion (set s1, set s2); … #endif
5
Implementation in C #include “set.h” struct set { // your favorite concrete representation }; set newSet () { // real code goes here } …
6
Sample Impl ’ Using Linked List #include “linkedList.h” #include “set.h” struct set { linkedList list; };
7
Sample Impl ’ Using Linked List // functions set newSet () { set s = malloc (sizeof (*s)); s->list = newLinkedList (); return s; } list s
8
Sample Impl ’ Using Linked List // functions int setSize (set s) { linkList l = s->list; int size = linkedListSize (l); return size; } list s
9
Sample Impl ’ Using Linked List // functions void setInsert (set s, poly x) { if (setExists (s, x)) return; linkedListInsert (s->list, x); return; }
10
Sample Impl ’ Using Linked List // functions int setExist (set s, poly x) { return linkedListExists (s->list, x); }
11
Equality Testing How to do equality testing on “polymorphic” data? 1. Extra “equals” function pointer as argument. int linkedListExist (linkedList l, poly x, tyEq equals); 2. Extra “equals” function pointers in data. int linkedListExist (linkedList l, poly x) { for (…p…) (p->data)->equals (p->data, x); } // As we can see next in Java.
12
Client Code int main () { set s1 = newSet (); set s2 = newSet (); for (…) setInsert (s1, …); for (…) setInsert (s1, …); set s3 = setUnion (s1, s2); }
13
Summary So Far set
14
Set in Java
15
Interface in Java public interface SetInter // the type “set” { int size (); // “Object” is the most polymorphic type void insert (Object x); SetInter union (SetInter s); … }
16
Or Using Generic // Type “set”, with type argument “X” public interface SetInter { int size (); void insert (X x); SetInter union (SetInter s); … } // We’ll use this strategy in following slides
17
Implementation in Java public class Set implements SetInter { // any concrete internal representation Set () // constructor { // code goes here } int size () { // code goes here } … }
18
Sample Impl ’ Using Linked List import ….linkedList; public class Set implements SetInter { private linkedList list; Set () { this.list = new LinkedList (); }
19
Sample Impl ’ Using Linked List import ….linkedList; public class Set implements SetInter { private linkedList list; int size () { return this.list.size (); }
20
Sample Impl ’ Using Linked List import ….linkedList; public class Set implements SetInter { private linkedList list; void insert (X x) { if (exists (x)) // equality testing? return; this.list.insert (x); return; }
21
Client Code import ….Set; public class Main { public static void main (String[] args) { SetInter s1 = new Set (); SetInter s2 = new Set (); s1.size (); s1.union (s2); }
22
Bit-Vector
23
Bit-Vector Interface interface type bitArray bitArray newBitArray (int size); void assignOne (bitArray ba, int index); bitArray and (bitArray ba1, bitArray ba2); … end
24
Interface in C #ifndef BITARRAY_H #define BITARRAY_H typedef struct bitArray *bitArray; bitArray newBitArray (int size); void assignOne (bitArray ba, int index); bitArray and (bitArray ba1, bitArray ba2); … #endif
25
Implementation in C #include “bitArray.h” struct bitArray { int *array; int size; };
26
Operations bitArray newBitArray (int i) { bitArray ba = malloc (sizeof (*ba)); ba->array = malloc (sizeof (*(ba->array)) * i); for (int k=0; k<i; k++) (ba->array)[i] = 0; ba->size = i; return ba; }
27
Operations bitArray and (bitArray ba1, bitArray ba2) { if (ba1->size != ba2->size) error (…); bitArray ba = newBitArray (); for (…) assignOne (ba, …); return ba; }
28
Bit-Array in Java
29
In Java // I omit the interface for simplicity public class BitArray { private int[] array; BitArray (int size) { this.array = new int[size]; }
30
Other Methods public class BitArray { private int[] array; BitArray and (BitArray ba2) { if (this.size () != ba2.size ()) throw new Error (…); BitArray ba = new BitArray (this.size()); … return ba; }
31
Re-implement Set using Bit-Vector
32
Big Picture Universe set
33
Client Code int main () { set universe = newSet (); // insert elements into universe set s1 = newSet(); set s2 = newSet (); // insert elements into s1 and s2 setUnion (universe, s1, s2); }
34
What does the Universe Look Like? Universe is a set of (element, index) tuple. For instance: Universe = {(“a”, 0), (“b”, 3), (“c”, 1”), (“d”, 2)} Question: How to build such kind of universe from the input strings? Answer: associate every set element e a unique (and continuous) integer i (i will be used as an index in the bit-vector. Details leave to you.
35
Big Picture 1. Build the bit-array from the universe {( “ a ”, 0), ( “ b ”, 3), ( “ c ”, 1 ” ), ( “ d ”, 2)} {“a”}{“a”}{“d”}{“d”}
36
Big Picture 1. Build the bit-array from the universe baSet1 = [0, 0, 0, 0] baSet2 = [0, 0, 0, 0] {( “ a ”, 0), ( “ b ”, 3), ( “ c ”, 1 ” ), ( “ d ”, 2)} {“a”}{“a”}{“d”}{“d”}
37
Big Picture 1. Build the bit-array from the universe baSet1 = [0, 0, 0, 0] baSet2 = [0, 0, 0, 0] 2. Build bit-array from set baSet1 = [1, 0, 0, 0] baSet2 = [0, 0, 1, 0] {( “ a ”, 0), ( “ b ”, 3), ( “ c ”, 1 ” ), ( “ d ”, 2)} {“a”}{“a”}{“d”}{“d”}
38
Big Picture 1. Build the bit-array from the universe baSet1 = [0, 0, 0, 0] baSet2 = [0, 0, 0, 0] 2. Build bit-array from set baSet1 = [1, 0, 0, 0] baSet2 = [0, 0, 1, 0] {( “ a ”, 0), ( “ b ”, 3), ( “ c ”, 1 ” ), ( “ d ”, 2)} {“a”}{“a”}{“d”}{“d”} 3. Bit-vector operations baSet3 = or (baSet1, baSet2) baSet3 = [1, 0, 1, 0] 4. Turn baSet3 to ordinary set How? Leave it to you.
39
How to Store the Universe? // Method 1: stored in separate space int main () { set universe = newSet (); // insert elements into universe set s1 = newSet(); set s2 = newSet (); // insert elements into s1 and s2 setUnion (universe, s1, s2); // ugly }
40
How to Store the Universe? // Method 2: shared Universe set
41
How to Make Things Shared? In C: extern variables In C++ or Java: static fields What ’ s the pros and cons?
42
Client Code int main () { set universe = newUniverse (); // insert elements into universe set s1 = newSet(); set s2 = newSet (); // insert elements into s1 and s2 setUnion (s1, s2); // hummm, no universe AT ALL! }
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.