Presentation is loading. Please wait.

Presentation is loading. Please wait.

High energy neutrino astronomy: Challenges & Prospects Eli Waxman Weizmann Institute, ISRAEL.

Similar presentations


Presentation on theme: "High energy neutrino astronomy: Challenges & Prospects Eli Waxman Weizmann Institute, ISRAEL."— Presentation transcript:

1 High energy neutrino astronomy: Challenges & Prospects Eli Waxman Weizmann Institute, ISRAEL

2 High energy  ’ s: A new window MeV detectors: Solar & SN1987A ’ s Stellar physics (Sun ’ s core, SNe core collapse)  physics >0.1 TeV detectors: Extend horizon to extra-Galactic scale MeV detectors limited to local (Galactic) sources [10kt @ 1MeV  1Gton @ TeV,  TeV /  MeV ~10 6 ] Study “ Cosmic accelerators ” [p , pp   ’s  ’s]  physics

3 HEN detector motivation: Cosmic accelerators Cosmic-ray E [GeV] log [dJ/dE] 1 10 6 10 E -2.7 E -3 Heavy Nuclei Protons Light Nuclei? Galactic X-Galactic (?) [Blandford & Eichler, Phys. Rep. 87; Axford, ApJS 94; Nagano & Watson, Rev. Mod. Phys. 00] Source: Supernovae(?) Source? Lighter

4 UHE, >10 10 GeV, CRs 3,000 km 2 J(>10 11 GeV)~1 / 100 km 2 year 2  sr Ground array Fluorescence detector Auger: 3000 km 2

5 Composition clues HiRes 2005 Auger 2009

6 [Waxman 1995; Bahcall & Waxman 03] [Katz & Waxman 09] E 2 (dN/dE)=E 2 (dQ/dE) t eff. (t eff. : p +  CMB  N +  Assume: p, dQ/dE~(1+z) m E -  >10 19.3 eV: consistent with protons, E 2 (dQ/dE) ~10 43.7 erg/Mpc 3 yr + GZK E 2 (dQ/dE) ~Const.: Consistent with shock acceleration [Krimsky 77; Bednarz & Ostrowski 98; Keshet & Waxman 05 cf. Lemoine & Revenu 06] Flux & Spectrum ct eff [Mpc] GZK (CMB) suppression log(E 2 dQ/dE) [erg/Mpc 2 yr]

7 Anisotropy clues Galaxy density integrated to 75Mpc CR intensity map (  source ~  gal ) [Waxman, Fisher & Piran 1997] Biased (  source ~  gal for  gal >  gal ) [Kashti & Waxman 08] Cross-correlation signal: Anisotropy @ 98% CL; Consistent with LSS Correlation with AGN ? VCV catalogue: Anisotropy @ 99% CL  low-luminosity AGN? Simply trace LSS! (& VCV non-uniform, incomplete … ) [Auger collaboration 07]

8 Composition-Anisotropy connection Plausible assumptions: Acceleration of Z(>>1) to E ~ Acceleration of p to E/Z J p (E/Z)>=J Z (E/Z) + Note: p(E/Z) propagation = Z(E) propagation  Anisotropy of Z at 10 19.7 eV implies Stronger aniso. signal (due to p) at (10 19.7 /Z) eV ! Not observed! [:Lemoine & Waxman 09]

9 The 10 20 eV challenge R B v v 2R  t RF =R/  c) l =R/   22 22 [Waxman 95, 04, Norman et al. 95]

10 Suspects - L>10 12 (  2 /  ) L sun : * Extra-Galactic * Non at d<d GZK  Transient - E 2 (dQ/dE) ~10 43.7 erg/Mpc 3 yr Gamma-ray Bursts (GRBs)  ~ 10 2.5, L  ~ 10 19 L Sun  L/  2 >10 12 L sun (dn/dVdt)*E~10 -9.5 /Mpc 3 yr *10 53.5 erg ~10 44 erg/Mpc 3 yr Transient:  T  ~10s <<  T p  ~10 5 yr Active Galactic Nuclei (AGN, Steady):  ~ 10 1  L>10 14 L Sun = few brightest !! Non at d<d GZK  Invoke: “ Dark ” (proton only) AGN L~ 10 14 L Sun,  t~1month flares from stellar disruptions [Blandford 76; Lovelace 76] [Waxman 95, Vietri 95, Milgrom & Usov 95] [Waxman 95] [Boldt & Loewenstein 00] [Farrar & Gruzinov 08]

11 GRB: 10 20 L Sun, M BH ~1M sun, M~1M sun /s,  ~10 2.5 AGN: 10 14 L Sun, M BH ~10 9 M sun, M~1M sun /yr,  ~10 1 MQ: 10 5 L Sun, M BH ~1M sun, M~10 -8 M sun /yr,  ~10 0.5 Source physics challenges Energy extraction Jet acceleration Jet content (kinetic/Poynting) Particle acceleration Radiation mechanisms [Reviws: GRBs Kouveliotou 94; Piran 05 AGN Begelman, Blandford & Rees 84 MQ HE: Aharonian et al 2005; Khangulyan et al 2007]

12 Cosmic accelerators: clues & open Q ’ s X-Galactic, (?)protons “ Conventional ” accelerators E p 2 dN/dE p ~ 0.6x10 44 erg/Mpc 3 yr Open Q ’ s: Primaries Source identity Acceleration process Cosmic-accelerators physics (BH accretion  jets, Baryonic/EM … )

13 HE  Astronomy p +   N +   0  2  ;  +  e + + e +  +   Identify UHECR sources Study BH accretion/acceleration physics E 2 dn/dE=10 44 erg/Mpc 3 yr &   p <1: If X-G p ’ s:  Identify primaries, determine f(z) [Waxman & Bahcall 99; Bahcall & Waxman 01] [Berezinsky & Zatsepin 69]

14 HE experiments Optical Cerenkov - South Pole Amanda: 660 OM, 0.05 km 3 IceCube: +660/yr OM (05/06 … ) 4800 OM=1 km 3 s - Mediterranean Antares: 10 lines (Nov 07), 750 OM  0.05 km 3 Nestor: (?)  0.1 km 3 km3Net: R&D  1 km 3 UHE: Radio Air shower Aura, Ariana (in Ice) Auger (  ) ANITA (Balloon) EUSO (?) LOFAR

15 Single flavor Multi flavor [Anchordoqui & Montaruli 09]

16 Star bursts: A lower bound? Star burst galaxies: - Star Formation Rate ~10 3 M sun /yr >> 1 M sun /yr “ normal ” (MW) - Density ~10 3 /cc >> 1/cc “ normal ” - B ~1 mG >> 1  G “ normal ” Most stars formed in (z>1.5) star bursts High density + B: CR e - ’ s lose all energy to synchrotron radiation CR p ’ s lose all energy to  production [Loeb & Waxman 06] [Quataert et al. 06]

17 Mark Westmoquette (University College London), Jay Gallagher (University of Wisconsin-Madison), Linda Smith (University College London), WIYN//NSF, NASA/ESA Robert Gendler M82 M81

18 Synchrotron radio  calibration [Loeb & Waxman 06] M82, NGC253: Hess, VERITAS 09 Fermi 09  dN/dE~1/E p, p<~2.2 Starbursts       

19 GRB ’ s If: Baryonic jet Background free: [Waxman & Bahcall 97, 99; Rachen & Meszaros 98; Alvarez-Muniz & F. Halzen 99; Guetta et al. 04; Hooper, Alvarez-Muniz, Halzen & E. Reuveni 04]

20 The current limit [Achterberg et al. 08 (The IceCube collaboration)]

21 - physics & astro-physics  decay  e :  :  = 1:2:0 (Osc.)  e :  :  = 1:1:1  appearance experiment GRBs: -  timing (10s over Hubble distance) LI to 1:10 16 ; WEP to 1:10 6 EM energy loss of  ’ s (and  ’ s)  e :  :  = 1:1:1 (E>E 0 )  1:2:2  GRBs: E 0 ~10 15 eV Combining E E 0 flavor measurements may constrain CPV [Sin  13 Cos  ] [Waxman & Bahcall 97] [Rachen & Meszaros 98; Kashti & Waxman 05] [Waxman & Bahcall 97; Amelino-Camelia,et al.98; Coleman &.Glashow 99; Jacob & Piran 07] [Blum, Nir & Waxman 05]

22 Outlook Particle+Astro-phys. Open Q ’ s - >10 11 GeV particles: primaries, f(z), origin & acceleration - Physics of relativistic sources (GRBs, AGN, MQ … ) - <10 11 GeV particles: sources, acceleration, propagation (SNRs, starbursts, … ) -       appearance  Timing  LI to 1:10 16 ; WEP to 1:10 6 Flavor ratios  CPV New HE , CR and detectors >10 3 km 2 hybrid >10 19 eV CR detectors ~1 km 3 (=1Gton) 1-1000TeV detectors >>1 km 3 [radio, … ] >>1000TeV detectors 10MeV—10GeV  -ray satellite (AGILE, GLAST) >0.1TeV (ground based)  -ray telescopes (Milagro, HESS, MAGIC, VERITAS) Point sources

23 AMANDA & IceCube

24 The Mediterranean effort ANTARES (NESTOR, NEMO)  KM3NeT

25

26 Back up slides

27 GRB proton/electron acceleration Electrons MeV  ’ s:   <1: e - (  ) spectrum: e - (  )  energy production [Waxman 95, 04] Afterglow, R GRB ~SFR Protons Acceleration/expansion: Synchrotron losses: Proton spectrum: p energy production: 52

28 The GRB “ GZK sphere ” LSS filaments: D~1Mpc, f V ~0.1, n~10 -6 cm -3, T~0.1keV  B =(B 2 /8  nT~0.01 (B~0.01  G), B ~10kpc Prediction: p  D B [Waxman 95; Miralda-Escude & Waxman 96, Waxman 04]

29 GRB Model Predictions [Miralda-Escude & Waxman 96]

30 AGN models?? BBR05

31 >10 19 eV cosmic rays: Clue summary Spectrum (+X max )  likely X-Galactic protons Anisotropy + Spectrum  likely “ Conventional ” sources L constraint  likely Transient sources E p 2 dN/dE p ~ 0.7x10 44 erg/Mpc 3 yr What next for Auger? Identify (narrow spectrum) point source(s)?


Download ppt "High energy neutrino astronomy: Challenges & Prospects Eli Waxman Weizmann Institute, ISRAEL."

Similar presentations


Ads by Google