Download presentation
Presentation is loading. Please wait.
1
High energy neutrino astronomy: Challenges & Prospects Eli Waxman Weizmann Institute, ISRAEL
2
High energy ’ s: A new window MeV detectors: Solar & SN1987A ’ s Stellar physics (Sun ’ s core, SNe core collapse) physics >0.1 TeV detectors: Extend horizon to extra-Galactic scale MeV detectors limited to local (Galactic) sources [10kt @ 1MeV 1Gton @ TeV, TeV / MeV ~10 6 ] Study “ Cosmic accelerators ” [p , pp ’s ’s] physics
3
HEN detector motivation: Cosmic accelerators Cosmic-ray E [GeV] log [dJ/dE] 1 10 6 10 E -2.7 E -3 Heavy Nuclei Protons Light Nuclei? Galactic X-Galactic (?) [Blandford & Eichler, Phys. Rep. 87; Axford, ApJS 94; Nagano & Watson, Rev. Mod. Phys. 00] Source: Supernovae(?) Source? Lighter
4
UHE, >10 10 GeV, CRs 3,000 km 2 J(>10 11 GeV)~1 / 100 km 2 year 2 sr Ground array Fluorescence detector Auger: 3000 km 2
5
Composition clues HiRes 2005 Auger 2009
6
[Waxman 1995; Bahcall & Waxman 03] [Katz & Waxman 09] E 2 (dN/dE)=E 2 (dQ/dE) t eff. (t eff. : p + CMB N + Assume: p, dQ/dE~(1+z) m E - >10 19.3 eV: consistent with protons, E 2 (dQ/dE) ~10 43.7 erg/Mpc 3 yr + GZK E 2 (dQ/dE) ~Const.: Consistent with shock acceleration [Krimsky 77; Bednarz & Ostrowski 98; Keshet & Waxman 05 cf. Lemoine & Revenu 06] Flux & Spectrum ct eff [Mpc] GZK (CMB) suppression log(E 2 dQ/dE) [erg/Mpc 2 yr]
7
Anisotropy clues Galaxy density integrated to 75Mpc CR intensity map ( source ~ gal ) [Waxman, Fisher & Piran 1997] Biased ( source ~ gal for gal > gal ) [Kashti & Waxman 08] Cross-correlation signal: Anisotropy @ 98% CL; Consistent with LSS Correlation with AGN ? VCV catalogue: Anisotropy @ 99% CL low-luminosity AGN? Simply trace LSS! (& VCV non-uniform, incomplete … ) [Auger collaboration 07]
8
Composition-Anisotropy connection Plausible assumptions: Acceleration of Z(>>1) to E ~ Acceleration of p to E/Z J p (E/Z)>=J Z (E/Z) + Note: p(E/Z) propagation = Z(E) propagation Anisotropy of Z at 10 19.7 eV implies Stronger aniso. signal (due to p) at (10 19.7 /Z) eV ! Not observed! [:Lemoine & Waxman 09]
9
The 10 20 eV challenge R B v v 2R t RF =R/ c) l =R/ 22 22 [Waxman 95, 04, Norman et al. 95]
10
Suspects - L>10 12 ( 2 / ) L sun : * Extra-Galactic * Non at d<d GZK Transient - E 2 (dQ/dE) ~10 43.7 erg/Mpc 3 yr Gamma-ray Bursts (GRBs) ~ 10 2.5, L ~ 10 19 L Sun L/ 2 >10 12 L sun (dn/dVdt)*E~10 -9.5 /Mpc 3 yr *10 53.5 erg ~10 44 erg/Mpc 3 yr Transient: T ~10s << T p ~10 5 yr Active Galactic Nuclei (AGN, Steady): ~ 10 1 L>10 14 L Sun = few brightest !! Non at d<d GZK Invoke: “ Dark ” (proton only) AGN L~ 10 14 L Sun, t~1month flares from stellar disruptions [Blandford 76; Lovelace 76] [Waxman 95, Vietri 95, Milgrom & Usov 95] [Waxman 95] [Boldt & Loewenstein 00] [Farrar & Gruzinov 08]
11
GRB: 10 20 L Sun, M BH ~1M sun, M~1M sun /s, ~10 2.5 AGN: 10 14 L Sun, M BH ~10 9 M sun, M~1M sun /yr, ~10 1 MQ: 10 5 L Sun, M BH ~1M sun, M~10 -8 M sun /yr, ~10 0.5 Source physics challenges Energy extraction Jet acceleration Jet content (kinetic/Poynting) Particle acceleration Radiation mechanisms [Reviws: GRBs Kouveliotou 94; Piran 05 AGN Begelman, Blandford & Rees 84 MQ HE: Aharonian et al 2005; Khangulyan et al 2007]
12
Cosmic accelerators: clues & open Q ’ s X-Galactic, (?)protons “ Conventional ” accelerators E p 2 dN/dE p ~ 0.6x10 44 erg/Mpc 3 yr Open Q ’ s: Primaries Source identity Acceleration process Cosmic-accelerators physics (BH accretion jets, Baryonic/EM … )
13
HE Astronomy p + N + 0 2 ; + e + + e + + Identify UHECR sources Study BH accretion/acceleration physics E 2 dn/dE=10 44 erg/Mpc 3 yr & p <1: If X-G p ’ s: Identify primaries, determine f(z) [Waxman & Bahcall 99; Bahcall & Waxman 01] [Berezinsky & Zatsepin 69]
14
HE experiments Optical Cerenkov - South Pole Amanda: 660 OM, 0.05 km 3 IceCube: +660/yr OM (05/06 … ) 4800 OM=1 km 3 s - Mediterranean Antares: 10 lines (Nov 07), 750 OM 0.05 km 3 Nestor: (?) 0.1 km 3 km3Net: R&D 1 km 3 UHE: Radio Air shower Aura, Ariana (in Ice) Auger ( ) ANITA (Balloon) EUSO (?) LOFAR
15
Single flavor Multi flavor [Anchordoqui & Montaruli 09]
16
Star bursts: A lower bound? Star burst galaxies: - Star Formation Rate ~10 3 M sun /yr >> 1 M sun /yr “ normal ” (MW) - Density ~10 3 /cc >> 1/cc “ normal ” - B ~1 mG >> 1 G “ normal ” Most stars formed in (z>1.5) star bursts High density + B: CR e - ’ s lose all energy to synchrotron radiation CR p ’ s lose all energy to production [Loeb & Waxman 06] [Quataert et al. 06]
17
Mark Westmoquette (University College London), Jay Gallagher (University of Wisconsin-Madison), Linda Smith (University College London), WIYN//NSF, NASA/ESA Robert Gendler M82 M81
18
Synchrotron radio calibration [Loeb & Waxman 06] M82, NGC253: Hess, VERITAS 09 Fermi 09 dN/dE~1/E p, p<~2.2 Starbursts
19
GRB ’ s If: Baryonic jet Background free: [Waxman & Bahcall 97, 99; Rachen & Meszaros 98; Alvarez-Muniz & F. Halzen 99; Guetta et al. 04; Hooper, Alvarez-Muniz, Halzen & E. Reuveni 04]
20
The current limit [Achterberg et al. 08 (The IceCube collaboration)]
21
- physics & astro-physics decay e : : = 1:2:0 (Osc.) e : : = 1:1:1 appearance experiment GRBs: - timing (10s over Hubble distance) LI to 1:10 16 ; WEP to 1:10 6 EM energy loss of ’ s (and ’ s) e : : = 1:1:1 (E>E 0 ) 1:2:2 GRBs: E 0 ~10 15 eV Combining E E 0 flavor measurements may constrain CPV [Sin 13 Cos ] [Waxman & Bahcall 97] [Rachen & Meszaros 98; Kashti & Waxman 05] [Waxman & Bahcall 97; Amelino-Camelia,et al.98; Coleman &.Glashow 99; Jacob & Piran 07] [Blum, Nir & Waxman 05]
22
Outlook Particle+Astro-phys. Open Q ’ s - >10 11 GeV particles: primaries, f(z), origin & acceleration - Physics of relativistic sources (GRBs, AGN, MQ … ) - <10 11 GeV particles: sources, acceleration, propagation (SNRs, starbursts, … ) - appearance Timing LI to 1:10 16 ; WEP to 1:10 6 Flavor ratios CPV New HE , CR and detectors >10 3 km 2 hybrid >10 19 eV CR detectors ~1 km 3 (=1Gton) 1-1000TeV detectors >>1 km 3 [radio, … ] >>1000TeV detectors 10MeV—10GeV -ray satellite (AGILE, GLAST) >0.1TeV (ground based) -ray telescopes (Milagro, HESS, MAGIC, VERITAS) Point sources
23
AMANDA & IceCube
24
The Mediterranean effort ANTARES (NESTOR, NEMO) KM3NeT
26
Back up slides
27
GRB proton/electron acceleration Electrons MeV ’ s: <1: e - ( ) spectrum: e - ( ) energy production [Waxman 95, 04] Afterglow, R GRB ~SFR Protons Acceleration/expansion: Synchrotron losses: Proton spectrum: p energy production: 52
28
The GRB “ GZK sphere ” LSS filaments: D~1Mpc, f V ~0.1, n~10 -6 cm -3, T~0.1keV B =(B 2 /8 nT~0.01 (B~0.01 G), B ~10kpc Prediction: p D B [Waxman 95; Miralda-Escude & Waxman 96, Waxman 04]
29
GRB Model Predictions [Miralda-Escude & Waxman 96]
30
AGN models?? BBR05
31
>10 19 eV cosmic rays: Clue summary Spectrum (+X max ) likely X-Galactic protons Anisotropy + Spectrum likely “ Conventional ” sources L constraint likely Transient sources E p 2 dN/dE p ~ 0.7x10 44 erg/Mpc 3 yr What next for Auger? Identify (narrow spectrum) point source(s)?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.