Download presentation
Presentation is loading. Please wait.
1
Felix Güthe 1, Hongbin Ding, Thomas Pino 3, Tim W. Schmidt 4, Andrei Boguslavskiy John Maier Institut für Physikalische Chemie der Universität Basel, Basel, Switzerland 1 abcd Switzerland Ltd., Baden, Switzerland 2 Institut für Physikalische Chemie der Universität Basel, Basel, Switzerland 3 Laboratoire de Photophysique Moleculaire, Universite Paris-Sud, Orsay, France 4 Sydney University, Sydney, Australia Bunsentagung, Dresden 2004 Gas phase electronic spectra of linear carbon chains: HC n+1 H, HC n H, HC n+1, HC n
2
hypothetical new allotrope diamond: sp3 graphite: sp2 “polyyne”: sp hypothetical new allotrope molecular wire precursor nano tubes, fullerenes etc. interstellar molecules optical properties: transition n-> ∞∞ band gap bulk behaviour optical properties: band gaps absorption in the ISM ->spectroscopy Nanowires
3
taken from: http://cfa-www.harvard.edu/cfa/mmw/mmwlab/ismmolecules_organic.html Interstellar molecules
4
K.-H. Homman, Angew. Chem. 1998, 110, 2572; Angew. Chem. Int. Ed. Engl. 1998, 37, 2435; Flames
5
Picture : H. Linnartz Pulsed Electrical Discharge
6
2= 157 nm, 189nm, 212nm Experiment
7
Mass spectrum
8
electronic transitions- HC 2n H excitations: + g →→ (n) u / (n-1) g →→ (n) g/u A u (n) u / (n-1) g →→ (n) g/u + u (n) u / (n-1) g →→ (4n) g/u u (4n-1) g/u →→ (n) g/u u
9
HC 2n H(n=8-13): + g →→ + u R2CPI-spectra of acetylenic chains
10
states: HC 6 H, HC 8 H, HC 10 H, HC 12 H, HC 14 H HC 2n H(n=3-7): + g →→ u, - u dipole-forbidden ( bending)
11
strong B-transiton! Observed and Calculated Values
12
electronic transitions- HC 2n+1 H excitations: - g →→ (n-1) g / (n-1) u →→ (n) u / (n-1) g a - u (n) u / (n-1) g →→ (n) g/u b - u (n) u / (n-1) g →→ (4n+4) g/u C u mixing of degenerate a( - u ) and b( - u ) yields - u )=a+b/sqrt(2) - u )=a-b/sqrt(2) Dewar-Longuet-Higgins (1954, Proc. Phys. Soc. ) on odd alternant hydrocarbons: A occurs at longer wavelength and is weaker than B B must be the strongest transition
13
The HC 2n+1 H Series: HC 7 H, HC 9 H, HC 11 H, HC 13 H HC 2n+1 H(n=3-6): X - g →→ A - u,
14
strong B-transiton HC 19 H is weak in mass spectrum, but still visible HC 13 H... HC 19 H: X - g →→ B - u, MRCI: Mühlhäuser, Peyerimhoff et al. (2002)
15
HC 13 H... HC 19 H: X - g →→ B - u, as predicited in 1954 !
16
extrapolation to C
17
isoelectronic HC n - system
18
Solvent and endgroup effect
19
Conclusions for odd and even chains: strong B-states: –f~Nc –position in the visible –broad peaks –in the ISM –similar for kation (HC 2n+1 H +, HC 2n+1 H - ), anion sp allotrope: bandgap in UV/visible matrix shifts bondlength alternation
20
HC 2n+1 H: anion - neutral- cation ground state: (n-1) (n) (n+ 1) : (n-1) (n) →→ (n-1) (n) a - u (n) (n+1 ) →→ (n) (n+1 ) b - u same behaviour for anions and cations: a and b degenerate-> mixing to yield weak A and strong B transition
21
Bond length alternation: Acetylenic vs cumulenic
22
Bond length alternation: even and odd
23
Bond length alternation: neutral and anionic
24
backup longchains additional material
25
Spectroscopic techniques Spectral range: UV/visible for DIBs Direct absorption –I/I 0 –sensitivity and selectivity –multiple passes and Cavity Ring Down Spectroscopy or Laser induced Fluorescence excited state lifetime, fluorescence quantum yield Mass selective techniques –Resonance Enhanced Multi Photon Ionisation (and related - R2ColourPhotoDetachment) –change in the m/z ratio (anion neutral ; neutral cation, cation Fragment) –sensitivity for ion detection is high! –additional molecular information: mass –physics of the ionisation/detachment process is important
26
Ion:D 0 S1S1 S1S1 Neutral:S 0 IP/2 IP common example:“uncommon Example”:C n C n * C n-m +C m Cn+Cn+ near UV UV vis near UV C n *+ C n-m + +C m exit channels? REMPI scheme
27
Franck- Condon factors Excitation scheme even odd
28
strong solvent shift: 4000 cm -1 to the red
29
HCCH + HCCH - + C HCCH - HCC - C - HC 2n H HC 2n -
31
R2CPI-spectra of acetylenic chains + g →→ + u
32
Even : HC 6 H, HC 8 H, HC 10 H, HC 12 H, HC 14 H HC 2n H(n=3-7): + g →→ u
33
The HC 2n+1 H Series: HC 7 H, HC 9 H, HC 11 H, HC 13 H... HC 19 H
36
end polayacetylenes additional material
37
Gas phase electronic spectra of linear carbon chains: HC n+1 H, HC n H, HC n+1, HC n Felix Güthe 1, Hongbin Ding, Thomas Pino 3, Tim W. Schmidt 4, Andrei Boguslavskiy John Maier Institut für Physikalische Chemie der Universität Basel, Basel, Switzerland 1 abcd Switzerland Ltd., Baden, Switzerland 2 Institut für Physikalische Chemie der Universität Basel, Basel, Switzerland 3 Laboratoire de Photophysique Moleculaire, Universite Paris-Sud, Orsay, France 4 Sydney University, Sydney, Australia Bunsentagung, Dresden 2004
38
C 3 H- identified in the ISM by microwave spectroscopy! spectrum in the visible detected via R2CPI with F2 laser in the VUV !!
39
C3HC3H complicated spectrum! Renner-Teller (4 atoms) distorted more than one electronic state
40
C3HC3H ground state: 2 linear-bend transition 3 electronic states contribute to spectrum complicated Renner- Teller distorted spectrum! individual lines to weak to be detected in the ISM by vis-absorption
41
electronic transitions- C 2n H excitations: →→ (4n+1) →→ (n) :weak, IR (n-1) →→ (n) :strong, vis (n) →→ (n+1) :weak UV excitations: →→ (n) →→ (4n+1) (4n+1) →→ (n+1) (n) →→ (n+1)
42
The C 2n+1 H Series: C 3 H,C 5 H,C 7 H,C 9 H
43
electronic transitions- C 2n+1 H excitations: →→ (4n+3) →→ (n) :vis (n-1) →→ (n) : vis (n) →→ (n+1) :
44
The C 2n+1 H Series: C 3 H,C 5 H,C 7 H,C 9 H 2 →→ - 3- 4 different electronic states!
45
Extrapolation
46
end longchains additional material
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.