Download presentation
Presentation is loading. Please wait.
1
m.apollonioam0412071 M. Apollonio University of Oxford update on STEP III
2
m.apollonioam0412072 the case for STAGE III first demonstration of cooling with solid absorber(s) ?
3
m.apollonioam0412073 Matching Coils currents Set up a procedure to find the right MC currents for a matched beam: a) (trk1-2)=1/ , =0 b) fix (min) Z (m) Chosen configuration must comply with coil/physics constraints: 1- max current 2- temp. margin 3- (min) minimise m.s. B (T) (m)
4
m.apollonioam0412074 800 mm
5
m.apollonioam0412075 800 mm T=97.9 % T=98.4 % emi=10 mm rad (a)(b) (a) (b)
6
m.apollonioam0412076 NB: beta_min = 49 cm (was 60cm at CM14) means M1 1.4x, M2 0.7x main issues a)current increase: is it within tolereances? b)magnet forces? c)MC distance = 800 mm. Can it be changed? 300 A!
7
m.apollonioam0412077 emittance growth in vacuum Z (m) T (final)/ T (initial) i =1.0 cm rad 0 1 2 3 4 5 6 T / T =2.8% 2.8 % T / T Z (m) T (cm rad)
8
m.apollonioam0412078 : emittance evolution in a cylindrical symmetric channel non uniform B z can cause growth (e.g. flip region) Z (m) T (m rad) ecalc9 MUC-NOTE 0071 prediction Most of the effect explained
9
m.apollonioam0412079 (a) 13 cm LiH absorber in the middle
10
m.apollonioam04120710 -7.3% -3% Pz vs Z emi vs Z Beta= 70cm Beta= 50 cm
11
m.apollonioam04120711 (b) 13 cm LiH absorber in the II solenoid
12
m.apollonioam04120712 vacuum (no absorbers) LiH absorber LiH absorber - vacuum
13
m.apollonioam04120713 equilibrium vacuum growth subtracted emi. % variation
14
m.apollonioam04120714
15
m.apollonioam04120715 Conclusion 1)Slow B flip emi growth. Has to be minimized 2)a single absorber seems to work better 3) the middle point cannot have a low beta cooling effect reduced 4) reduce beta_centre increase M1 currents forces 5) better to place abs inside the II solenoid uneasy 6) transmission: large radius spool piece doesn’t seem to create dramatic effects
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.