Download presentation
Presentation is loading. Please wait.
1
S. Mandayam/ ANN/ECE Dept./Rowan University Artificial Neural Networks ECE.09.454/ECE.09.560 Fall 2006 Shreekanth Mandayam ECE Department Rowan University http://engineering.rowan.edu/~shreek/fall06/ann/ Lecture 4 October 9, 2006
2
S. Mandayam/ ANN/ECE Dept./Rowan UniversityPlan Recall: Multilayer Perceptron Architecture Signal Flow Learning rule - Backpropagation Lab Project 2
3
S. Mandayam/ ANN/ECE Dept./Rowan University Multilayer Perceptron (MLP): Architecture 1 1 1 x1x1 x2x2 x3x3 y1y1 y2y2 w ji w kj w lk Input Layer Hidden Layers Output Layer Inputs Outputs
4
S. Mandayam/ ANN/ECE Dept./Rowan University MLP: Characteristics Neurons possess sigmoidal (logistic) activation functions Contains one or more “hidden layers” Trained using the “backpropagation” algorithm MLP with 1-hidden layer is a “universal approximator” 1 0 0.5 1 (t) t
5
S. Mandayam/ ANN/ECE Dept./Rowan University MLP: Signal Flow Function signal Error signal Computations at each node, j Neuron output, y j Gradient vector, dE/dw ji Forward propagation Backward propagation
6
S. Mandayam/ ANN/ECE Dept./Rowan University MLP Training Forward Pass Fix w ji (n) Compute y j (n) Backward Pass Calculate j (n) Update weights w ji (n+1) i j k Left Right i j k Left Right x y
7
S. Mandayam/ ANN/ECE Dept./Rowan University Lab Project 2 http://engineering.rowan.edu/~shreek /fall06/ann/lab2.htmlhttp://engineering.rowan.edu/~shreek /fall06/ann/lab2.html
8
S. Mandayam/ ANN/ECE Dept./Rowan UniversitySummary
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.