Download presentation
Presentation is loading. Please wait.
1
Rajai1 y b
2
2 APPLICATIONS v Heat and mass transfer rates are enhanced by the oscillation of the surrounding fluid. Useful in combustion, drying and the passage of sound waves through particulate systems. v Particle-laden flows, Brownian motion, suspension rheometry, colloidal suspension, and particle motion in filters.
3
Rajai3 MODES OF HEAT TRANSFER v RADIATION v CONDUCTION v CONVECTION (forced & free)
4
Rajai4 GOVERNING EQUATIONS Conservation of momentum where
5
Rajai5 First law of thermodynamics Conservation of mass
6
Rajai6 VECTOR RELATIONS
7
Rajai7 Define:
8
Rajai8 then,
9
Rajai9 and,
10
Rajai10 a g SPHERICAL COORDINATES SCALE FACTORS r
11
Rajai11 VARIABLES
12
Rajai12 DIMENSIONLESS NUMBERS kinematic viscosity thermal diffusivity volumetric expansion coef. frequency of oscillation surface temperature far-field temperature
13
Rajai13 USING THE SPHERICAL COORDINATE SYSTEM, THE EQUATIONS REDUCE TO: (1) (2) (3)
14
Rajai14 BOUNDARY CONDITIONS
15
Rajai15 Equations are two dimensional, time-dependent, nonlinear, coupled, and of infinite domain. No explicit boundary conditions for vorticity on the surface. Difficulties with finite- differences such as, indeterminate forms, etc..
16
Rajai16
17
Rajai17 THE METHOD OF SOLUTION
18
Rajai18 HOW ?!
19
Rajai19 INTEGRALS NEEDED !! and in general,
20
Rajai20 where After Mavromatis & Alassar:
21
Rajai21 where
22
Rajai22 Saalschutz’s Theorem
23
Rajai23 3-j SYMBOLS Represent the probability amplitude that three angular momentum j1, j2, and j3 with projections m1, m2, and m3 are coupled to yield zero angular momentum. They are related to Clebsch-Gordan coefficients (C) by:
24
Rajai24 where Clebsch-Gordan Coefficients
25
Rajai25 (1) (2) (3)
26
Rajai26 where,
27
Rajai27 MODES BOUNDARY CONDITIONS
28
Rajai28 NUMERICAL METHOD CRANK-NICOLSON F.D. SCHEME
29
Rajai29
30
Rajai30 SPECIALIZED STEP-BY-STEP METHOD
31
Rajai31
32
Rajai32
33
Rajai33 PHYSICAL PARAMETERS Nusselt Number
34
Rajai34
35
Rajai35
36
Rajai36 Drag Coefficient
37
Rajai37 Pressure Coefficient
38
Rajai38 VALIDATION
39
Rajai39 SOME RESULTS
40
Rajai40
41
Rajai41
42
Rajai42
43
Rajai43
44
Rajai44
45
Rajai45
46
Rajai46 0.2300 0.0000 0.2500
47
Rajai47 0.2625 0.2725
48
Rajai48 0.2750 0.3125
49
Rajai49 0.5000 0.5550 0.5650
50
Rajai50 0.60000.7250 0.7500
51
Rajai51 FUTURE RESEARCH Heat transfer from a sphere in a spinning infinite fluid. Heat transfer from other geometries such as oblate and prolate spheroids.
52
Rajai52 SPHEROIDS
53
Rajai53 Stream Function Vorticity
54
Rajai54 Boundary Conditions Energy
55
Rajai55 A NOTE ON THE PROBLEM OF SPINNING STREAM
56
Rajai56
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.