Download presentation
Presentation is loading. Please wait.
1
Stellar Magnetospheres part deux: Magnetic Hot Stars Stan Owocki
2
Key concepts from lec. 1 MagRe# --> inf => “ideal” => frozen flux breaks down at small scales: reconnection Lorentz force ~ mag. pressure + tension plasma ~ P gas /P mag ~ (a/V A ) 2 press. scale ht. H << R (except in corona) wind mag. conf. ~B 2 R 2 /Mdot*V
3
Wind Magnetic Confinement for OB SG, to get * ~ 1, need B * ~ 100 G Ratio of magnetic to kinetic energy density: e.g, for dipole field, q=3; ~ 1/r 4 ** Alfven Radius: ( R A ) 1 For dipole (q=3): R A = * 1/4 R *
4
Hot Stars vs. Sun Luminous Radiative Envelope (not conv.) Radiatively Driven Wind (line scatt.) –T wind ~= T eff –M dot ~ 10 -7 M O /yr >> M dot,sun Detected B-fields often steady, dipole Rotation can be rapid V rot ~< V crit NOT a (direct) solar Coronal analog!
5
Light transports energy (& information) But it also has momentum, p=E/c Usually neglected, because c is so high But becomes significant for very bright stars, Key question: how big is force vs. gravity?? e =g e /g < 1 (near but below “Edd. limit”) “CAK” wind model: lines = g lines /g > 1 Light’s Momentum
6
Force depends on gradient of Pressure grad P rad comes from opacity Deep interior ( >>1), P rad nearly isotropic –P rad + P gas act together => H =a 2 /g(1- ) But near surface ( ~1) radiation “beamed” wind is not “Radiation Pressure Corona” H ~< R Aside: Radiation Pressure vs. Gas Pressure
7
Radiative force ~ e.g., compare electron scattering force vs. gravity g el g grav e L 4 GMGMc r L 4 r 2 c Th e GM 2 For sun, O ~ 2 x 10 -5 But for hot-stars with L~ 10 6 L O ; M=10-50 M O... if gray
8
Optically Thick Line-Absorption in an Accelerating Stellar Wind L sob For strong, optically thick lines: << R *
9
CAK force for power -law line ensemble
10
CAK wind in zero-gas-pressure limit
11
Graphical solution
12
Magnetohydrodynamic (MHD) Equations Mass Momentum mag Induction Divergence free B EnergyIdeal Gas E.O.S.
13
Magnetohydrodynamic (MHD) Equations Mass Momentum mag Induction Divergence free B EnergyIdeal Gas E.O.S.
14
MHD Simulation of Wind Channeling Confinement parameter A. ud Doula PhD thesis 2002 Isothermal No Rotation * =1/3
15
MHD Simulation of Wind Channeling Confinement parameter Isothermal No Rotation * =1
16
MHD Simulation of Wind Channeling Confinement parameter Isothermal No Rotation * = 3
17
MHD Simulation of Wind Channeling Confinement parameter Isothermal No Rotation * =10
18
MHD Simulation of Wind Channeling Confinement parameter Isothermal No Rotation R A ~ * 1/4 R * * =10
19
Confinement parameter Isothermal No Rotation R A ~ * 1/4 R * * =1000 ! !
20
295 G ; * = 1 Final state of isothermal models 1650 G ; * = 32 930 G ; * = 10520 G ; * = 3.2 165 G ; * = 0.3293 G ; * = 0.1
21
1 Ori C
22
MHD simulation for 1 Ori C (O7 V) B obs ~ 1100 G + P rot = 14 days M dot ~ 10 -7 M sun /yr * ~= 14 Magnetic Confined Wind Shock (MCWS) kev X-rays => match Chandra obs.
23
Magnetically Confined Wind-Shocks Babel & Montmerle 1997 Magnetic A p -B p stars
24
Magnetically Confined Wind Shock ~ 2 kev X-rays fit Chandra spectrum for 1 Ori C log T but now with Radiative Cooling still no rotation
25
-1 Ori C Gagne et al. 2005, ApJ, 528, 986 P rot = 13 days
26
1 Ori C ~ 45 o i ~ 45 o
27
X-ray Light Curve for 1Ori C
28
Magnetically Torqued Disk (MTD) Cassinelli et al. 2002
29
Alfven vs. Kepler Radius when R A > R K : Magnetic spin-up => centrifugal support & ejection Kepler co-rotation Radius, R K : GM/ R K 2 = V 2 /R K R K = w 2/3 R * w=V rot /V crit V crit 2 = GM/R * = V rot 2 R K /R * 2 Alfven radius: (R A )=1 R A = * 1/4 R * e.g, for dipole field, ~ 1/r 4
30
Keplerian spin-up vs. escape w = V rot /V crit sqrt( * ) ~ B v > v esc v < v kep
31
MHD Sims of Field-Aligned Rotation * =10 ; v rot =250 km/s (w=1/2) Density V /V rigid RKRK RARA RKRK RARA
32
Field aligned rotation RKRK RARA V rot =250 km/s = V crit /2 again isothermal, but now with
33
Magnetically Torqued Disk Owocki & ud-Doula 2003 Cassinelli et al. 2002
34
Ori E
35
Magnetic Bp Stars Ori E (B2p V) – P rot = 1.2 days => v rot /v crit ~ 1/2 – B obs ~ 10 4 G => * ~ 10 7 ! –=> V Alfven very large => Courant time very small –=> Direct MHD impractical Instead treat fields lines as “Rigid”
36
Strong field limit: B *, * --> ∞ Field lines act as rigid guides for wind outflow – Torque up wind outflow – Hold down disk material vs. centrifugal force Problem: V Alfven -> ∞ => can’t do MHD But can model semi-analytically – Rigidly Rotating Magnetosphere (RRM) –gas accumulates at minima in grav+cent. potential
37
Effective Gravitational+Centrifugal Potential
38
R igidly R otating M agnetosphere Townsend & Owocki (2005)
39
Accumulation Surface Townsend & Owocki (2005)
41
RRM model for Ori E B * ~10 4 G tilt ~ 55 o * ~10 6 !
42
EM +B-field polarimetry photometry RRM model for Ori E B * ~10 4 G tilt ~ 55 o * ~10 6 !
43
Townsend, Owocki & Groote (2005)
44
Ori E RRM Model H Observations
45
Sanz-Forcada et al. (2004)
46
MHD sim of centrifugal breakout * = 620 v rot =v crit /2 log( )
47
* = 620 v rot =v crit /2 log T Centrifugally Driven Reconnection Flare ~ 4-5 kev X-ray flares, as seen in Ori E
48
Model grid for 2-Parameter study: Rotation & Magnetic Confinement
49
Isothermal, v rot =v crit /2, * =100 RKRK RARA
50
RKRK RARA
51
Isothermal, v rot =v crit /2, * =1000 RKRK R A ~7R *
52
Radial disk mass: dm e /dr
53
Equatorial mass distribution dm e /dr Radius (R * ) Time (Msec) 0 * =100 1 5 W=1/2
54
Equatorial mass distribution dm e /dr Radius (R * ) Time (Msec) 0 * =100 1 5 W=0
55
Parameter study: rotation & magnetic confinement
56
Between RRM and full MHD: “Rigid Field Hydro-Dynamics” RFHD Solve time-dependent hydro along completely rigid individual field lines
57
The flow along an individual field line
58
Rigid Field - Hydro Model
61
Summary Magnetic field + hot star wind: – * >10: channel wind into shock (MCWS) explains X-rays from 1 Ori C –spin up wind past Kepler co-rotation radius –confine material against centrifugal Rigidly Rotating Magnetosphere (RRM) explains H- vs. rot. phase in Ori E –mass build up => centrifugal breakout reconnection => T >~ 10 8 K can explain hard X-ray flares in Ori E “centrifugally driven reconnection”
62
Current & Future Work 3D MHD of MCWS –lateral structure scale, tilted field case Comparison with observations –Chandra & XMM X-rays from shocks and flares –Optical photometry, spectroscopy, polarimetry Rotation Spin-Down?? –VLTI to resolve disk Application to other types of magnetospheres? RRM shock as site for Fermi acceleration?? –Could produce up to TeV Gamma Rays!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.