Download presentation
Presentation is loading. Please wait.
1
COMPASS Algebra Practice Test B This practice test is 10 items long. Record your responses on a sheet of paper. The correct answers are on the slide after the last question. Complete solutions follow the answer slide. Click the mouse or use the spacebar to advance to the next question.
2
B1. Which of these is the product of (x + 2y) and (2x – 3y) ? A. 2x 2 – 7xy + 6y 2 B.2x 2 + xy – 6y 2 C.2x 2 + 7xy + 6y 2 D.2x 2 – xy – 6y 2 E.2x 2 + 7xy – 6y 2
3
B2.For all and, A. B. C. D. E.
4
B3.This is a graph of which equation? A. B. C. D. E.
5
B4.What is the solution to the equation 3(x + 2) – 2(2x + 2) = -2 ? A. -12 B. 10 C. -4 D. 4 E. 12
6
A. B. C. D. E. B5.In the Cartesian plane what is the distance between the points and ?
7
A. B. C. -375 D. E. -125 B6.Simplify:
8
B7.What is the distance from point A to point B? A. 8 B. 34 C. D. E.
9
B8.For all x ≠ 0 and y ≠ 0, A. B. C. D. E.
10
B9. For all x, y, and z, (x 3 y 2 z) 2 A. x 5 y 4 z 2 B. x 6 y 4 z 2 C. x 9 y 4 z 2 D. x 5 y 4 z 3 E. 2x 3 y 2 z
11
B10. If and, then A. 45 B.64 C. 30 D. 9 E.15
12
Answers Algebra Practice Test B 1.B 2.A 3.D 4.D 5.E 6.D 7.D 8.B 9.B 10.A
13
B1. Which of these is the product of (x + 2y) and (2x – 3y) ? A.2x 2 – 7xy + 6y 2 B.2x 2 + xy – 6y 2 C.2x 2 + 7xy + 6y 2 D.2x 2 – xy – 6y 2 E.2x 2 + 7xy – 6y 2
14
B2.For all and, A. B. C. D. E. Multiply by the reciprocal of the divisor
15
B3.This is a graph of which equation? A. B. C. D. E. Recall y = mx +bThis line has a negative, downward slope. This eliminates B and C. The y-intercept is +6 This eliminates E. The slope is down 3 over 2. This eliminates A.
16
B4.What is the solution to the equation 3(x + 2) – 2(2x + 2) = -2 ? A. -12 B. 10 C. -4 D. 4 E. 12
17
A. B. C. D. E. B5.In the Cartesian plane what is the distance between the points and ? Recall the distance formula.
18
A. B. C. -375 D. E. -125 B6.Simplify: Negative Exponent Take the reciprocal. Rewrite rational exponent with radical notation Simplify
19
B7.What is the distance from point A to point B? A. 8 B. 34 C. D. E. 5 3 c Use the Pythagorean Theorem
20
B8.For all x ≠ 0 and y ≠ 0, A. B. C. D. E. Let each negative exponent cross the division bar and it becomes positive.
21
B9. For all x, y, and z, (x 3 y 2 z) 2 (x 3 y 2 z) 2 (x 3 y 2 z)(x 3 y 2 z) When multiplying like bases, add the exponents. x 3 + 3 y 2 + 2 z 1 + 1 x 6 y 4 z 2 oA. x 5 y 4 z 2 oB. x 6 y 4 z 2 oC. x 9 y 4 z 2 oD. x 5 y 4 z 3 oE. 2x 3 y 2 z
22
B10. If and, then A. 45 B.64 C. 30 D. 9 E.15
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.