Download presentation
Presentation is loading. Please wait.
1
Non-adaptive probabilistic group testing with noisy measurements: Near-optimal bounds with efficient algorithms Chun Lam Chan, Pak Hou Che and Sidharth Jaggi The Chinese University of Hong Kong Venkatesh Saligrama Boston University
2
Non-adaptive probabilistic group testing with noisy measurements: Near-optimal bounds with efficient algorithms Chun Lam Chan, Pak Hou Che and Sidharth Jaggi The Chinese University of Hong Kong Venkatesh Saligrama Boston University n-d d
3
Non-adaptive probabilistic group testing with noisy measurements: Near-optimal bounds with efficient algorithms Chun Lam Chan, Pak Hou Che and Sidharth Jaggi The Chinese University of Hong Kong Venkatesh Saligrama Boston University n-d d
4
Literature No error: [DR82], [DRR89] With small error ϵ : Upper bound: [AS09], [SJ10] 4
5
Literature No error: [DR82], [DRR89] With small error ϵ : Upper bound: [AS09], [SJ10] Lower bound: [Folklore] 5
6
Non-adaptive probabilistic group testing with noisy measurements: Near-optimal bounds with efficient algorithms
7
Algorithms motivated by Compressive Sensing 7 Combinatorial Basis Pursuit (CBP) Combinatorial Orthogonal Matching Pursuit (COMP)
8
Noiseless CBP 8 n-d d
9
Noiseless CBP 9 n-d d Discard
10
Noiseless CBP 10 Sample g times to form a group n-d d
11
Noiseless CBP 11 Sample g times to form a group n-d d
12
Noiseless CBP 12 Sample g times to form a group n-d d
13
Noiseless CBP 13 Sample g times to form a group n-d d
14
Noiseless CBP 14 Sample g times to form a group Total non-defective items drawn: n-d d
15
Noiseless CBP 15 Sample g times to form a group Total non-defective items drawn: Coupon collection: n-d d
16
Noiseless CBP 16 Sample g times to form a group Total non-defective items drawn: Coupon collection: Conclusion: n-d d
17
Noisy CBP 17 n-d d
18
Noisy CBP 18 n-d d
19
Noisy CBP 19 n-d d
20
Noisy CBP 20 n-d d
21
Noiseless COMP 21
22
Noiseless COMP 22
23
Noiseless COMP 23
24
Noiseless COMP 24
25
Noiseless COMP 25
26
Noisy COMP 26
27
Noisy COMP 27
28
Noisy COMP 28
29
Noisy COMP 29
30
Noisy COMP 30
31
Noisy COMP 31
32
Noisy COMP 32
33
Simulations 33
34
Simulations 34
35
Summary 35 With small error,
36
End Thanks 36
37
Noiseless COMP x001000100 My 0111000001 0001001001 0100000010 1110001101 0011011001 0000100110 0011011001 37
38
x001000100 My 0111000001 0001001001 0100000010 1110001101 0011011001 0000100110 0011011001 01 01 10x9x9 01 → 0 01 10 01 Noiseless COMP 38
39
Noiseless COMP x001000100 My 0111000001 0001001001 0100000010 1110001101 0011011001 0000100110 0011011001 00 11 00x7x7 11 → 1 11 00 11 39
40
Noiseless COMP x001000100 My 0111000001 0001001001 0100000010 1110001101 0011011001 0000100110 0011011001 11 11 00x4x4 01 → 1 11 00 11 40
41
Noiseless COMP x001000100 My 0111000001 0001001001 0100000010 1110001101 0011011001 0000100110 0011011001 110001 111101 00x4x4 00x7x7 10x9x9 (a)01 → 1(b)11 → 1(c)01 → 0 111101 000010 111101 41
42
Noisy COMP x001000100 My ν ŷ 010100000000 000100100110 010000001011 1110001111+1 → 0 011101000101 000010011000 001101100101 00 00 01 10 11 00 11 42
43
Noisy COMP x001000100 My ν ŷ 010100000000 000100100110 010000001011 1110001111+1 → 0 011101000101 000010011000 001101100101 00 00 01x3x3 10 → 1 11 00 11 43
44
Noisy COMP x001000100 My ν ŷ 010100000000 000100100110 010000001011 1110001111+1 → 0 011101000101 000010011000 001101100101 10 00 11x2x2 10 → 1 11 00 01 44
45
Noisy COMP x001000100 My ν ŷ 010100000000 000100100110 010000001011 1110001111+1 → 0 011101000101 000010011000 001101100101 00 10 01x7x7 10 → 0 01 00 11 45
46
Noisy COMP x001000100 My ν ŷ 010100000000 000100100110 010000001011 1110001111+1 → 0 011101000101 000010011000 001101100101 100000 000010 11x2x2 01x3x3 01x7x7 (a)10 → 1(b)10 → 1(c)10 → 0 111101 000000 011111 46
47
Noisy COMP x001000100 My ν ŷ 010100000000 000100100110 010000001011 1110001111+1 → 0 011101000101 000010011000 001101100101 100000 000010 11x2x2 01x3x3 01x7x7 (a)10 → 1(b)10 → 1(c)10 → 0 111101 000000 011111 47
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.