Download presentation
Presentation is loading. Please wait.
1
1 G. Haller haller@slac.stanford.edu 1 LUSI CXI FIDR June 3, 2009 CXI Photon Controls and Data Systems Gunther Haller Coherent X-ray Imaging Instrument Final Instrument Design Review
2
2 G. Haller haller@slac.stanford.edu 2 LUSI CXI FIDR June 3, 2009 XES Near & Far Hall Hutches and Beamline Layout (not to scale) 230 m SXR AMO MEC
3
3 G. Haller haller@slac.stanford.edu 3 LUSI CXI FIDR June 3, 2009 LCLS X-Ray Endstation (XES) Provided Controls Subsystems Following sub-systems are provided to CXI by LCLS XES and are thus not described in this review (reviewed separately) Hutch Protection System Machine Protection System User Safeguards (include Oxygen Deficiency Monitoring) Laser Femto-Second Timing System Machine Timing System Networking EPICS Control system Online/Offline Processing System 2-D Pixel Array Detector
4
4 G. Haller haller@slac.stanford.edu 4 LUSI CXI FIDR June 3, 2009 Specification and Interface Control Documents Released Engineering Specification Documents (detailed requirements regarding controls and data systems needs of instrument) CXI Controls ESD (SP-391-001-13) CXI DAQ ESD (SP-391-001-18) Released Interface Control Documents (specify where the interface is, who is responsible for what) XES-LUSI ICD (1.1.523) XES CXI Controls ICD (SP-391-001-14) Status: all documents are released http://confluence.slac.stanford.edu/display/PCDS/CXI_XCS-PDR
5
5 G. Haller haller@slac.stanford.edu 5 LUSI CXI FIDR June 3, 2009 Reviews CXI Controls and Data Systems Preliminary Design Review held May 11, 09 Presentations are at http://confluence.slac.stanford.edu/display/PCDS/CXI_XCS-PDR Many controls items are already used in other (earlier) photon sections, XTOD and AMO, both are past the Final Design Review stage and are being assembled. XTOD is in the commissioning stage. In addition XPP will be installed before CXI.
6
6 G. Haller haller@slac.stanford.edu 6 LUSI CXI FIDR June 3, 2009 Risks and Procurements No technical, schedule, cost risk items except Usual risk that devices are changed or added without controls being informed Mitigated by Regular meetings Keep ESD and ICD documents up-to-date No long term lead-time or > $100k items Components are ordered with sufficient margin
7
7 G. Haller haller@slac.stanford.edu 7 LUSI CXI FIDR June 3, 2009 ES&H Hutch Protection Systems provided by LCLS XES, hutch 3 (CXI) is the fourth hutch to be operated Same for User Safeguards (Oxygen Deficiency Monitor) Electrical Safety All cables/equipment are rated for their use All equipment will be NRTL listed or inspected and approved under SLAC's Electrical Equipment Inspection Program
8
8 G. Haller haller@slac.stanford.edu 8 LUSI CXI FIDR June 3, 2009 CXI Instrument Diagnostics & Wavefront Monitor 1 micron Sample Environment * 0.1 micron KB & Sample Environment, Particle Injector and IToF (CD-4) 1 micron KB Reference Laser Diagnostics/Common Optics All Early Science except *
9
9 G. Haller haller@slac.stanford.edu 9 LUSI CXI FIDR June 3, 2009 Controls Subsystems Vacuum Motion Viewing Power Supplies Racks and Cabling Other items Software: EPICS/Python/Qt Type of controls Valve Control Vacuum Controls Pop-In Profile Monitor Controls Pop-In Intensity Monitor Controls Intensity-Position Monitor Controls Slit Controls Attenuator Controls Pulse Picker Controls KB Mirror Controls X-Ray Focusing Lense Control Sample Environment Controls Particle Injector Controls Ion ToF Controls Vision Camera Controls Detector Stage Controls Reference Laser Controls DAQ Controls
10
10 G. Haller haller@slac.stanford.edu 10 LUSI CXI FIDR June 3, 2009 CXI Components to Control X-Ray Optics KB system Motion Vendor provided, integration with LCLS Reference Laser Motion Sample Environment Sample Chamber Motion, vacuum, vision Ion ToF HV, DC/pulser, digitizer Instrument Stand Motion Detector Stage Motion, vacuum, thermal Particle Injector Motion, vacuum, digitizer, vision, integration of commercial component Vacuum System Valve and Vacuum Controls
11
11 G. Haller haller@slac.stanford.edu 11 LUSI CXI FIDR June 3, 2009 CXI Components to Control con’t Diagnostics and Common Optics Pop-In Profile Monitor Motion, Viewing Pop-In Intensity Motion, Digitization Intensity Position Motion, Digitization Slit System Motion Attenuator Motion Pulse-Picker Motion, Viewing X-Ray Focusing Lense Motion CXI specific interface and programming Racks & Cabling Workstations Vision Cameras Beam Line Processor Channel Access Gateway Machine Protection System Configuration Data Acquisition
12
12 G. Haller haller@slac.stanford.edu 12 LUSI CXI FIDR June 3, 2009 EPICS/Python/Qt EPICS (Experimental Physics and Industrial Control System): Control software for RT systems Monitor (pull scheme) Alarm Archive Widely used at SLAC and other labs More: http://www.aps.anl.gov/epics/http://www.aps.anl.gov/epics/ Python/Qt is a user interface between the EPICS drivers and records and the user System is used for XTOD and AMO, provided as part of the XES Photon Controls Infrastructure
13
13 G. Haller haller@slac.stanford.edu 13 LUSI CXI FIDR June 3, 2009 Example of Python/Qt user interface
14
14 G. Haller haller@slac.stanford.edu 14 LUSI CXI FIDR June 3, 2009 Example: Vacuum All gauge controllers are MKS 937A Interface Terminal server – DIGI TS16 MEI Automation Direct PLC All ion pump controllers are Gama Vacuum DIGITEL MPC dual All valves are controlled by PLC relay module The out/not-out state of all valves go into the MPS system to prevent damage if a valve closes unexpectedly.
15
15 G. Haller haller@slac.stanford.edu 15 LUSI CXI FIDR June 3, 2009 Example: Motion Control System provides support for all motions Motors IMS MDrive Plus 2 integrated controller and motor IMS MForce Plus 2 controller for control of in vacuum and other specialized motors Newport motor controllers Others as required Pneumatic motion Solenoid Driver chassis, SLAC 385-001
16
16 G. Haller haller@slac.stanford.edu 16 LUSI CXI FIDR June 3, 2009 Fast (DAQ) Camera System
17
17 G. Haller haller@slac.stanford.edu 17 LUSI CXI FIDR June 3, 2009 Photon Control Data Systems (PCDS)XPP specific Digitizers + Cameras TimingL0: Control (One) L1: Acquisition (Many) L2: Processing (Many) L3: Data Cache (Many) DAQ system primary features Trigger and readout Process and veto Monitoring Storage Provided to CXI by XES, same system as used for AMO and XPP Beam Line Data Data System Architecture
18
18 G. Haller haller@slac.stanford.edu 18 LUSI CXI FIDR June 3, 2009 CXI 2D-Detector Control and DAQ Chain Ground- isolation Vacuum Fiber Cornell detector/ASIC with SLAC quadrant board ATCA crate with SLAC DAQ Boards Each Cornell detector has ~36,000 pixels Controlled and read out using Cornell custom ASIC ~36,000 front-end amplifier circuits and analog-to-digital converters Initially 16 x 32,000-pixel devices, then up to 64 x 32,000-pixel devices 4.6 Gbit/sec average with > 10 Gbit/sec peak Carrier Board S:AC RCE ATCA Module
19
19 G. Haller haller@slac.stanford.edu 19 LUSI CXI FIDR June 3, 2009 CXI Online Processing Electronics gain correction (in RCE) Response of amplifying electronics is mapped during calibration Science data images are corrected for channel gain non-uniformity + non-linearity. Dark image correction (in RCE) Dark images accumulated between x-ray pulses Averaged dark image subtracted from each science data image Flat field correction (in RCE) Each science data image is corrected for non-uniform pixel response Event filtering (in RCE or later) Events are associated with beam line data (BLD) via timestamp and vetoed based upon BLD values. Veto action is recorded. Images may be sparsified by predefined regions of interest.
20
20 G. Haller haller@slac.stanford.edu 20 LUSI CXI FIDR June 3, 2009 CXI Online Processing con’t Event processing (processing stage) Examples are Sparcification (region of interest) Locating center Reducing data by binning pixels Mask errant pixels (saturated, negative intensity from dark image subtraction due to e.g. noise, non- functioning pixels, edge pixels from moving center) Filling in missing data with centro-symmetric equivalent points Transforming camera geometry due solid angle coverage and dead space between tiles Radial averaging, showing intensity versus scattering angle or momentum transfer Compute 2D autocorrelation function (single FFT) and store. Essentially at rate of 1 Hz with 4 MB (2Mpixel x 2 bytes) frames. Peak finding (locate and fit Gaussian intensity peaks). There may be multiple peaks in some cases and the peak finding algorithms should be able to identify up to a few thousand peaks. The CXI instrument will have an Ion Time-of-Flight which will produce data at 120Hz. The online processing of this data involves data reduction based on thresholding and vetoing based on thresholding or the fitting of peak positions and height.
21
21 G. Haller haller@slac.stanford.edu 21 LUSI CXI FIDR June 3, 2009 CXI Monitoring A copy of the data is distributed (multicast) to monitoring nodes on the DAQ subnet. The monitoring nodes will provide displays for experimenters’ viewing: corrected detector images at ≥ 5 Hz histories of veto rates, beam intensity, + other BLD values. Reduced analysis of sampled binned data (versus scan parameter) or other processing tbd Implemented with Qt (C++/Python open source GUI)
22
22 G. Haller haller@slac.stanford.edu 22 LUSI CXI FIDR June 3, 2009 Common Diagnostics Readout Four- diode design R2R2 R1R1 22 11 L Target Quad-Detector FEL On-board calibration circuits not shown E.g. intensity, profile monitor, intensity position monitors E.g. Canberra PIPS or IRD SXUV large area diodes (single or quad) Amplifier/shaper/ADC for control/calibration/readout Board designed, fabricated, loaded, is in test
23
23 G. Haller haller@slac.stanford.edu 23 LUSI CXI FIDR June 3, 2009 WBS for LUSI XPP Controls & Data Systems 1.6.4.1 XPP H3 Controls Requirements, Design and Setup 1.6.4.2 XPP H3 Standard Hutch Controls 1.6.4.3 XPP H3 Specific Controls
24
24 G. Haller haller@slac.stanford.edu 24 LUSI CXI FIDR June 3, 2009 Milestones Controls Dates for Installation in FEH(incremental installation driven by instrument component availability) Start: Early~April 2010 Finish: Early~Nov 2010 Finish “Early Science” Commissioning before~ May 2011
25
25 G. Haller haller@slac.stanford.edu 25 LUSI CXI FIDR June 3, 2009 Summary Interface and Requirements documents released Clear what needs to be done No issues, design meets requirements Design Mature Most items are already used (hardware and software) in XTOD and AMO, plus XPP ahead of CXI CXI Preliminary Design Review completed Most items similar to XTOD and AMO and XPP which already had Final Design Reviews for Controls and Data Systems (XTOD is being installed, AMO will follow in July 09) Team Engineers and technicians from PPA Research Engineering Group, sufficient man- power available for CXI
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.