Download presentation
Presentation is loading. Please wait.
2
CS 128/ES 228 - Lecture 9a1 Principles of Remote Sensing Image from NASA – Goddard Space Flight Center, NOAA GOES-8 satellite, 2 Sep ’94, 1800 UT
3
CS 128/ES 228 - Lecture 9a2 Scanning planet Earth from space
4
CS 128/ES 228 - Lecture 9a3 History of remote sensing Earliest vehicle was …? Tournachon (‘Nadar’) took 1 st aerial photograph in 1858 (since lost) Earliest conserved aerial photograph: Boston, J. Black, 1860 Early applications were in military reconnaissance
5
CS 128/ES 228 - Lecture 9a4 WWII – heavy use of aerial reconnaissance Images: Avery. 1977. Interpretation of Aerial Photographs. 3rd ed. Burgess Press, Minneapolis, MN.
6
CS 128/ES 228 - Lecture 9a5 “Spy planes” & the Cold War
7
CS 128/ES 228 - Lecture 9a6 Satellite sensing Russian Sputnik (1957) - radio transmitter only Rapid response by US: CORONA (1960) Early applications: military reconnaissance
8
CS 128/ES 228 - Lecture 9a7 Advantages of satellites Wide coverage Vertical (orthogonal) view Multi-spectral data bands Rapid data collection
9
CS 128/ES 228 - Lecture 9a8 Sources of EM radiation Key distinction: passive sensing active sensing Spectral ‘signatures” Top: Lo & Yeung, fig. 8.1 Bottom: ASTER Spectral Library (http://speclib.jpl.nasa.gov)
10
CS 128/ES 228 - Lecture 9a9 Types of EM radiation used Three important spectral bands: visible light infrared radiation microwave radiation Image from NASA 1987. SAR: Synthetic Aperture Radar. Earth Observing System, Vol. IIf.
11
CS 128/ES 228 - Lecture 9a10 Atmospheric attenuation Scattering caused by aerosols (water vapor, dust, smoke) more intense at shorter wavelengths why the sky is blue Absorption caused by gas molecules (H 2 O, CO 2, O 2, O 3 ) each molecule absorbs at a specific wave- length result: atmospheric transmission windows
12
CS 128/ES 228 - Lecture 9a11 Transmission windows UV-visible-IR Microwave Image from NASA 1987. From Pattern to Process: The Strategy of the Earth Observing System. Vol. II.
13
CS 128/ES 228 - Lecture 9a12 Classes of sensors Photographic panchromatic color Infrared (IR) film (near IR) thermal IR sensors for longer wave- lengths Multi-spectral scanners sensors for many wavelengths image scanned across sensors Radar RAdio Detection And Ranging active imaging
14
CS 128/ES 228 - Lecture 9a13 Visual sensors: film types panchromatic near-infrared color Both images from Committee on Earth Observation Satellites http://ceos.cnes.fr:8100/cdrom-98/ceos1/irsd/content.htm
15
CS 128/ES 228 - Lecture 9a14 Infrared sensors IR penetrates haze and light cloud cover can be used at night used by military for camouflage detection IR ‘signature’ often distinct from visible image
16
CS 128/ES 228 - Lecture 9a15 Color IR film Used with yellow (blue- absorbing) filter 3 primary pigments, but not “true” (visible) color - green vegetation = red - clear water = dark blue - turbid water = bright blue - soil = green - urban areas = pale blue Top image: Committee on Earth Observation Satellites http://ceos.cnes.fr:8100/cdrom-98/ceos1/irsd/content.htm Bottom image: Avery. 1977. Interpretation of Aerial Photographs. 3 rd ed. Burgess Press, Minneapolis, MN.
17
CS 128/ES 228 - Lecture 9a16 Multispectral sensors Visible + IR spectra Comparison of film and electronic sensor spectral bands Top: Avery 1977. Interpretation of Aerial Photography. Burgess Publ., Ninneapolis Bottom: ASTER Science page (http://www.science.aster.ersdac.or.jp/users/parte1/02-5.htm#3)
18
CS 128/ES 228 - Lecture 9a17 Radar sensors active sensing day & night, all weather less affected by scattering (aerosols) vertical or oblique perspective Lo & Yeung, fig. 8.13
19
CS 128/ES 228 - Lecture 9a18 Uses of radar: altimetry satellite-nadir distance geoid & topographic measurements sea elevation, tides & currents wave/storm measurements Both images from NASA 1987. Altimetric System. Earth Observing System, Vol. IIh.
20
CS 128/ES 228 - Lecture 9a19 Uses of radar: SAR glaciology hydrology vegetation science geology Image from NASA 1987. SAR: Synthetic Aperture Radar. Earth Observing System, Vol. IIf.
21
CS 128/ES 228 - Lecture 9a20 Sensor resolution Spatial: size of smallest objects visible on ground. Ranges from 1 km. Inversely related to area covered by image Spectral: wavelengths recorded. Ex. panchromatic film (~0.2 – 0.7 µm); Landsat Thematic Mapper bands (0.06 to 0.24 µm wide) Radiometric: # bits/pixel. Ex. Landsat TM (8 bit); AVRIS (12 bit) Temporal: for satellite, time to repeat coverage. Ex. Landsats 5 & 7 (16 days)
22
CS 128/ES 228 - Lecture 9a21 Spatial resolution: analog (film) images Depends on: lens quality & camera stability size of negative film grain High quality aerial photograph: up to 60 lines/mm 9 x 9” (23 x 23 cm) negative scanned at 3000 dpi = ~725 megapixels if 8 bit image depth, >5 GB image size
23
CS 128/ES 228 - Lecture 9a22 Ground resolution G. R. = scale factor / film resolution Focal length of lens (mm) Altitude of plane (m) Scale of photograph Ground resolution (m) 85 3001:3,530 0.06 853,0001:35,300 0.59 6103,0001:54,1000.902
24
CS 128/ES 228 - Lecture 9a23 Spatial resolution: digital (satellite) images A sampler of recent (civilian) satellites: SponsorSatellite (instrument)YearRes. (m) NASALandsat (Thematic Mapper)1980-90s30 (MSS) NASA & others EOS Terra (ASTER)200015 - 90 (MSS) FranceSPOT-3 to 51993- 2002 10 to 5 (pan) Space Imaging IKONOS-219991 (pan) 4 (MSS) EarthWatchQuickbird-220010.6 (pan) 2.5 (MSS)
25
CS 128/ES 228 - Lecture 9a24 Satellite image resolution Quickbird 2 Commercial venture 0.63 m resolution U.S. trying to discourage open access to finer resolution images Digitalglobe.com
26
CS 128/ES 228 - Lecture 9a25 Satellite orbits Geostationary 36,000 km above equator Polar varying heights often in Sun- synchronous orbits Both diagrams from European Organisation for the Exploitation of Meteorological Satellites www.eumetsat.de/en/mtp/space/polar.html
27
CS 128/ES 228 - Lecture 9a26 Satellite coverage Geostationary no polar coverage coverage is 24/7 low ground reso- lution (~ 1 km) Polar global coverage coverage is dis- continuous Both diagrams from European Organisation for the Exploitation of Meteorological Satellites www.eumetsat.de/en/mtp/space/polar.html
28
CS 128/ES 228 - Lecture 9a27 Geostationary orbits Ex. GOES satellites Meteorological satellites GOES-8 at 75 o W, GOES-9 at 135 o W 5 bands (1 visible, 4 thermal infrared) Image from NASA – Goddard Space Flight Center, NOAA GOES satellite, Hurricane Floyd, 15 Sep ‘99
29
CS 128/ES 228 - Lecture 9a28 Polar orbits Ex. Landsat & Terra satellites 705 km height, ~100 minute orbit 185 km swath 16 day repeat Sun-synchronous orbits (~0945 a.m. equator crossing) Orbit tracking data from NASA – http://liftoff.msfc.nasa.gov/realtime/JTrack/eos.html, 5 Mar ‘03
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.