Presentation is loading. Please wait.

Presentation is loading. Please wait.

Biological sequence analysis and information processing by artificial neural networks Søren Brunak Center for Biological Sequence Analysis Technical University.

Similar presentations


Presentation on theme: "Biological sequence analysis and information processing by artificial neural networks Søren Brunak Center for Biological Sequence Analysis Technical University."— Presentation transcript:

1 Biological sequence analysis and information processing by artificial neural networks Søren Brunak Center for Biological Sequence Analysis Technical University of Denmark brunak@cbs.dtu.dk

2 Pairwise alignment >carp Cyprinus carpio growth hormone 210 aa vs. >chicken Gallus gallus growth hormone 216 aa scoring matrix: BLOSUM50, gap penalties: -12/-2 40.6% identity; Global alignment score: 487 10 20 30 40 50 60 70 carp MA--RVLVLLSVVLVSLLVNQGRASDN-----QRLFNNAVIRVQHLHQLAAKMINDFEDSLLPEERRQLSKIFPLSFCNSD ::. :...:.:. : :.. :: :::.:.:::: :::...::..::..:.:.:: :. chicken MAPGSWFSPLLIAVVTLGLPQEAAATFPAMPLSNLFANAVLRAQHLHLLAAETYKEFERTYIPEDQRYTNKNSQAAFCYSE 10 20 30 40 50 60 70 80 80 90 100 110 120 130 140 150 carp YIEAPAGKDETQKSSMLKLLRISFHLIESWEFPSQSLSGTVSNSLTVGNPNQLTEKLADLKMGISVLIQACLDGQPNMDDN : ::.:::..:..:..:::.:. ::.:: : : ::..:.:. :.... ::: ::. ::..:.. :.:. chicken TIPAPTGKDDAQQKSDMELLRFSLVLIQSWLTPVQYLSKVFTNNLVFGTSDRVFEKLKDLEEGIQALMRELEDRSPR---G 90 100 110 120 130 140 150 160 170 180 190 200 210 carp DSLPLP-FEDFYLTM-GENNLRESFRLLACFKKDMHKVETYLRVANCRRSLDSNCTL.: :.. :...:. :... ::.:::::.:::::::.:.:::.::::. chicken PQLLRPTYDKFDIHLRNEDALLKNYGLLSCFKKDLHKVETYLKVMKCRRFGESNCTI 170 180 190 200 210

3

4

5

6

7

8

9

10

11 Biological neuron

12

13 Diversity of interactions in a network enables complex calculations Similar in biological and artificial systems Excitatory (+) and inhibitory (-) relations between compute units

14

15 Transfer of biological principles to neural network algorithms Non-linear relation between input and output Massively parallel information processing Data-driven construction of algorithms Ability to generalize to new data items

16

17

18

19 Simplest non-trivial classification problem CNHSYYP, HIETRRA, NWQSADY, NQYSEPR, WHITRCA, DYHSANY,... Two categories: positives and negatives Data described by two features, e.g. charge, sidechain volume, molecular weight, number of atoms,...

20 Features of phosphorylations sites PKG cGMP- dep.kinase PKC CaM-II Ca++/cal- modulin-dep. kinase cdc2 Cyclin- dep.kinase 2 CK-II Casein kinase 2

21

22

23

24 Homotypical cerebral cortex – (from primate) - 6 layers

25

26

27

28

29 DEMO

30

31

32 negative positive Training and error reduction

33 Transfer of biological principles to neural network algorithms Non-linear relation between input and output Massively parallel information processing Data-driven construction of algorithms

34

35 Sparse encoding of amino acid sequence windows

36 Sparse encoding of nucleotide sequence windows Nucleotides 4 letter alphabet Normally no need for a fifth letter ACGTAGGCAATCTCAGACGTTTATC 1000010000100001100000100010010010001000000101000001010010000010100001000010000100010001100000010100

37

38

39


Download ppt "Biological sequence analysis and information processing by artificial neural networks Søren Brunak Center for Biological Sequence Analysis Technical University."

Similar presentations


Ads by Google