Download presentation
Presentation is loading. Please wait.
1
Thermal Photons in Strong Interactions Ralf Rapp Cyclotron Inst. + Physics Dept. Texas A&M University College Station, USA College Station, 24.09.04
2
Introduction I: E.M. Probes in Strong Interactions 0 0.05 0.3 0.75 [GeVfm -3 ] 120 150-160 175 T [MeV] ½ 2 0 5 0 hadron PT many-body degrees of freedom? QGP (2 ↔ 2) (3-body,...) (resonances?) consistent extrapolate pQCD -ray spectroscopy of atomic nuclei: collective phenomena DIS off the nucleon: - parton model, PDF’s (high Q 2 ) - nonpert. structure of nucleon [JLAB] thermal emission: - compact stars (?!) - heavy-ion collisions What is the electromagnetic spectrum of matter?
3
1. Introduction 2. Thermal Photon Emission Rates 2.1 Generalities 2.2 Quark-Gluon Plasma: Complete LO 2.3 Hadronic Matter: - Meson Gas - Baryonic Contributions - Medium Effects 3. Relativistic Heavy-Ion Collisions 3.1 Nonthermal Sources 3.2 Thermal Evolution 3.3 Comparison to SPS and RHIC Data 4. High-Density QCD: Colorsuperconductor 5. Conclusions Outline
4
Introduction II: Electromagnetic Emission Rates E.M. Correlation Function: e + e - γ Im Π em (M,q) Im Π em (q 0 =q) = O(1) = O(1) = O(α s ) = O(α s ) also: e.m susceptibility (charge fluct): χ = Π em (q 0 =0,q→0) In URHICs: source strength: depend. on T, B, ; medium effects, … system evolution: V( ), T( ), B ( ) ; transverse expansion, … nonthermal sources: e + e - : Drell-Yan, open-charm; : initial/ consistency! pre-equil.
5
2. Thermal Photon Radiation 2.1 Generalities Emission Rate per 4-volume and 3-momentum γ Im Π em (q 0 =q) T transverse photon selfenergy many-body language: kinetic theory: γ 2 |M| 2 in-medium effects, resummations, … cut
6
2.2 Quark-Gluon Plasma “Naïve” Leading Order Processes: q + q (g) → g (q) + γ [Kapusta etal ’91, Baier etal ’92] O But: other contributions to O(α s ) collinear enhanced D g =(t-m D 2 ) -1 ~ 1/α s [Aurenche etal ’00, Arnold,Moore+Yaffe ’01] Bremsstrahlung Pair-ann.+scatt. + ladder resummation (LPM) q gq
7
γ γ a1a1 a1a1 Photon-producing reactions: mostly at dominant (q 0 >0.5GeV) gauge invariance! q 0 <0.5GeV a 1 -strength problematic [Song ’93, Halasz etal ’98,…] 2.3.1 Hot Hadronic Matter: - -a 1 Gas Chiral Lagrangian + Axial/Vector-mesons, e.g. HLS or MYM: (g 0,m 0, , ) fit to m a1, ,a1 D/S and a 1 → γ) not optimal HLS MYM Kap.’91 (no a1)
8
quantitative analysis: account for finite hadron size improves a 1 phenomenology t-channel exchange: gauge invariance nontrivial [Kapusta etal ’91] simplified approach: [Turbide,Gale+RR ’04] 2.3.1.b Hadronic Formfactors with Factor 3-4 suppression at intermediate and high photon energies
9
2.3.2 Further Meson Gas Sources (i) Strangeness Contributions: SU(3) F MYM (iii) Higher Resonances Ax-Vec: a 1,h 1 → , Vec: , ’, ’’ → other: (1300) → f 1 → , K 1 → K K * → K a 2 (1320) → γ KK K γ K*K* K ~25% of → ~40% of → (ii) t-Channel γ G large! potentially important … [Turbide,Gale +RR ’04]
10
2.3.3 Baryonic Contributions use in-medium –spectral funct: constrained by nucl. -absorption: > > B *,a 1,K 1... N, ,K … N → N, N → NANA -ex [Urban,Buballa,RR+Wambach ’98]
11
2.3.3(b) Photon Rates from Spectral Function: Baryons + Meson-Resonances baryonic contributions dominant for q 0 <1GeV (CERES enhancement!) also true at RHIC+LHC: at T=180MeV, B =0 B =220MeV
12
2.3.4 HG Emission Rates: Summary B =220MeV [Turbide,RR+Gale ’04] t-channel (very) important at high energy formfactor suppression (2-4) strangeness significant baryons at low energy
13
2.3.5 In-Medium Effects many-body approach: encoded in vector-spectral function, relevant below M, q 0 ~ 1-1.5 GeV “dropping masses”: large enhancement due to increased phase space [Song+Fai ’98, Alam etal ’03] unless: vector coupling decreases towards T c (HLS, a→1) [Harada+Yamawaki ’01, Halasz etal ’98]
14
2.3.6 Hadron Gas vs. QGP Emission complete LO QGP rate ~2-3 above tree-level rate in-med HG + Meson-Ex (bottom-up) ≈ complete LO QGP (top-down) “quark-hadron duality” ?! Similar findings for thermal dilepton rates not yet understood …
15
3. Relativistic Heavy-Ion Collisions Au + Au → X e + e - Signatures of the QGP? Suppression of J/ Mesons Decays of -Mesons Photons … J/
16
3.1 Nonthermal Sources Initial hard production: pp → γX scaling with x T =2p T /√s, + power-law fit [Srivastava ’01] Nuclear Effects: pA → X “Cronin”: gaussian k t -smear. cf. pA → πX AA: AA ≈ 2 pA
17
3.2 Thermal Evolution: QGP→ Mix→ HG QGP: initial conditions [SPS] 0 =1fm/c → 0 =0.5fm/c: ~2-3 s=Cd QG T 3 ; d QG =40 → 32: ~2 pre-equilibrium?! HG: chemistry [LHC] T [GeV] conserved BB use entropy build-up of >0 (N =const) accelerated cooling HG: chemistry and trans. flow R~exp(3 ) for → , … yield up at low q t, down above large blue shift from coll. flow
18
3.3 Comparison to Data I: WA98 at SPS Hydrodynamics: QGP + HG [Huovinen,Ruuskanen+Räsänen ’02] T 0 ≈260MeV, QGP-dominated still true if pp→ X included [Turbide,RR+Gale’04] Expanding Fireball + Initial initial+Cronin at q t >1.5GeV T 0 =205MeV suff., HG dom.
19
3.3 Comp. to Data II: WA98 “Low-q t Anomaly” [Turbide,RR+Gale’04] Expanding Fireball Model current HG rate much below 30% longer FB 30% increase Include → S-wave slight improvement in-medium “ ” or ?!
20
3.3 Perspectives on Data III: RHIC large “pre-equilibrium” yield from parton cascade (no LPM) thermal yields ~ consistent QGP undersat. small effect Predictions for Central Au-Au PHENIX Data consistent with initial only disfavors parton cascade not sensitive to thermal yet
21
4. Photon Emission from Colorsuperconductor Cold Quark Matter → (qq) Cooper pairs, qq ≈100MeV q » m s 2 : u-d-s symmetrically paired (Color-Flavor-Locking) iral symmetry broken, Goldstone bosons, m 2 ~ m q 2 ≈ (10MeV) 2 Effective theory description of “hadronic” processes: γ γ Photon Emissivities exceeds e + e - → γγ for T≥5MeV [Vogt,Ouyed+RR]
22
5. Conclusions significant progress in E.-M. radiation from QCD matter: - QGP: soft collinear enhancement → complete leading order - HG: more complete (strangeness, baryons, t-chan, FF’s) extrapolations into phase transition region HG and QGP shine equally bright deeper reason? lattice calculations? phenomenology for URHIC’s compares favorably with existing data consistency with dileptons much excitement ahead: PHENIX, NA60, HADES, ALICE,… and theory!
23
Additional Slides
24
Photon Properties in Colorsuperconductors
25
(i) (770) + > > B *,a 1,K 1... N, ,K … Constraints: - branching ratios B,M→ N, - N, A absorpt., N→ N - QCD sum rules Significance of high B at low M E lab =20-40AGeV optimal?! 2.2.2 1 ± Mesons:
26
2.2.4 In-Medium Baryons: (1232) long history in nuclear physics ! ( A, A ) e.g. nuclear photoabsorption: M , up by 20MeV little attention at finite temperature -Propagator at finite B and T [van Hees + RR ’04] in-medium vertex corrections incl. g’ -cloud, (“induced interaction”) (1+ f - f N ) thermal -gas →N(1440), N(1520), (1600) + +... > > > > > > > > NN -1 N -1
27
(i) Check: in Vacuum and in Nuclei → ok !
28
(ii) (1232) in URHICs broadening: Bose factor, →B repulsion: N -1, NN -1 not yet included: ( N→
29
Comparison of Hadronic Models to LGT calculate integrate More direct! Proof of principle, not yet meaningful (need unquenched)
30
2.2.6 Observables in URHICs (i) Lepton Pairs (ii) Photons Im Π em (M,q) Im Π em (q 0 =q) e+e-e+e- γ baryon density effects! [Turbide,Gale+RR ’03] consistent with dileptons Brems with soft at low q?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.