Download presentation
Presentation is loading. Please wait.
1
2006 Fall MATH 100 Lecture 141 MATH 100 Class 20 Line Integral
2
2006 Fall MATH 100 Lecture 142 MATH 100 Class 20 Line Integral
3
2006 Fall MATH 100 Lecture 143 MATH 100 Class 20 Line Integral
4
2006 Fall MATH 100 Lecture 144 MATH 100 Class 20 Line Integral
5
2006 Fall MATH 100 Lecture 145 MATH 100 Class 20 Line Integral Remark: 1. Independence of parameterization all produce 1/3
6
2006 Fall MATH 100 Lecture 146 MATH 100 Class 20 Line Integral 2. Reversal of orientation If we reverse the orientation of the line integral, the line integral is the negation of the original result. all produce -1/3
7
2006 Fall MATH 100 Lecture 147 MATH 100 Class 20 Line Integral 3. let -C denote C with reverse orientation when line integral over piecewise smooth curve Figure 18.1.2
8
2006 Fall MATH 100 Lecture 148 MATH 100 Class 20 Line Integral
9
2006 Fall MATH 100 Lecture 149 MATH 100 Class 20 Line Integral
10
2006 Fall MATH 100 Lecture 1410 MATH 100 Class 20 Line Integral
11
2006 Fall MATH 100 Lecture 1411 Vector notation: let and MATH 100 Class 20 Line Integral
12
2006 Fall MATH 100 Lecture 1412 For parametric expression of curve MATH 100 Class 20 Line Integral
13
2006 Fall MATH 100 Lecture 1413 and MATH 100 Class 20 Line Integral
14
2006 Fall MATH 100 Lecture 1414 MATH 100 Class 20 Line Integral
15
2006 Fall MATH 100 Lecture 1415 What about varying force along a smooth curve? Figure 18.1.4 Let MATH 100 Class 20 Line Integral denote the curve and denote the force
16
2006 Fall MATH 100 Lecture 1416 MATH 100 Class 20 Line Integral
17
2006 Fall MATH 100 Lecture 1417 MATH 100 Class 20 Line Integral
18
2006 Fall MATH 100 Lecture 1418 MATH 100 Class 20 Line Integral
19
2006 Fall MATH 100 Lecture 1419 MATH 100 Class 20 Line Integral
20
2006 Fall MATH 100 Lecture 1420 MATH 100 Class 20 Line Integral
21
2006 Fall MATH 100 Lecture 1421 MATH 100 Class 20 Line Integral
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.