Presentation is loading. Please wait.

Presentation is loading. Please wait.

On the Power of Belief Propagation: A Constraint Propagation Perspective Rina Dechter Bozhena Bidyuk Robert Mateescu Emma Rollon.

Similar presentations


Presentation on theme: "On the Power of Belief Propagation: A Constraint Propagation Perspective Rina Dechter Bozhena Bidyuk Robert Mateescu Emma Rollon."— Presentation transcript:

1 On the Power of Belief Propagation: A Constraint Propagation Perspective Rina Dechter Bozhena Bidyuk Robert Mateescu Emma Rollon

2 Distributed Belief Propagation

3 1234 4321 55 555 How many people?

4 Distributed Belief Propagation Causal support Diagnostic support

5 Belief Propagation in Polytrees

6 BP on Loopy Graphs Pearl (1988): use of BP to loopy networks McEliece, et. Al 1988: IBP’s success on coding networks Lots of research into convergence … and accuracy (?), but: Why IBP works well for coding networks Can we characterize other good problem classes Can we have any guarantees on accuracy (even if converges)

7 Arc-consistency Sound Incomplete Always converges (polynomial) AB CD 3 2 1 A 3 2 1 B 3 2 1 D 3 2 1 C < < < = A < B 12 23 A < D 12 23 D < C 12 23 B = C 11 22 33

8 A ABABACAC ABDBCF DFG B 4 5 3 6 2 B D F A A A C 1 AP(A) 1.2 2.5 3.3 …0 ABP(B|A) 12.3 13.7 21.4 23.6 31.1 32.9 ……0 ABDP(D|A,B) 1231 1321 2131 2311 3121 3211 ………0 DFGP(G|D,F) 1231 2131 ………0 BCFP(F|B,C) 1231 3211 ………0 ACP(C|A) 121 321 ……0 A 1 2 3 AB 12 13 21 23 31 32 ABD 123 132 213 231 312 321 DFG 123 213 BCF 123 321 AC 12 32 A ABABACAC ABDBCF DFG B 4 5 3 6 2 B D F A A A C 1 Belief network Flat constraint network Flattening the Bayesian Network

9 ABP(B|A) 12>0 13 21 23 31 32 ……0 AB 12 13 21 23 31 32 Ah 1 2 (A) 1>0 2 3 …0 Bh 1 2 (B) 1>0 2 3 …0 Bh 1 2 (B) 1>0 3 …0 A 1 2 3 B 1 2 3 B 1 3 Updated belief: Updated relation: AB Bel (A,B) 13>0 21 23 31 ……0 AB 13 21 23 31 A ABAC ABDBCF DFG B 4 5 3 6 2 B D F A A A C 1 Belief Zero Propagation = Arc-Consistency

10 AP(A) 1.2 2.5 3.3 …0 ACP(C|A) 121 321 ……0 ABP(B|A) 12.3 13.7 21.4 23.6 31.1 32.9 ……0 BCFP(F|B,C) 1231 3211 ………0 ABDP(D|A,B) 1231 1321 2131 2311 3121 3211 ………0 DFGP(G|D,F) 1231 2131 ………0 A ABABACAC ABDBCF DFG B 4 5 3 6 2 B D F A A A C 1 Flat Network - Example

11 AP(A) 1>0 3 …0 ACP(C|A) 121 321 ……0 ABP(B|A) 131 21>0 23 311 ……0 BCFP(F|B,C) 1231 3211 ………0 ABDP(D|A,B) 1321 2311 3121 3211 ………0 DFGP(G|D,F) 2131 ………0 A ABABACAC ABDBCF DFG B 4 5 3 6 2 B D F A A A C 1 IBP Example – Iteration 1

12 AP(A) 1>0 3 …0 ACP(C|A) 121 321 ……0 ABP(B|A) 131 311 ……0 BCFP(F|B,C) 3211 ………0 ABDP(D|A,B) 1321 3121 ………0 DFGP(G|D,F) 2131 ………0 A ABABACAC ABDBCF DFG B 4 5 3 6 2 B D F A A A C 1 IBP Example – Iteration 2

13 AP(A) 1>0 3 …0 ACP(C|A) 121 321 ……0 ABP(B|A) 131 ……0 BCFP(F|B,C) 3211 ………0 ABDP(D|A,B) 1321 3121 ………0 DFGP(G|D,F) 2131 ………0 A ABABACAC ABDBCF DFG B 4 5 3 6 2 B D F A A A C 1 IBP Example – Iteration 3

14 AP(A) 11 …0 ACP(C|A) 121 321 ……0 ABP(B|A) 131 ……0 BCFP(F|B,C) 3211 ………0 ABDP(D|A,B) 1321 ………0 DFGP(G|D,F) 2131 ………0 IBP Example – Iteration 4 A ABABACAC ABDBCF DFG B 4 5 3 6 2 B D F A A A C 1

15 AP(A) 11 …0 ACP(C|A) 121 ……0 ABP(B|A) 131 ……0 BCFP(F|B,C) 3211 ………0 ABDP(D|A,B) 1321 ………0 DFGP(G|D,F) 2131 ………0 ABCDFGBelief 1322131 ………………0 IBP Example – Iteration 5 A ABABACAC ABDBCF DFG B 4 5 3 6 2 B D F A A A C 1

16 IBP – Inference Power for Zero Beliefs Theorem: Iterative BP performs arc-consistency on the flat network. Soundness: Inference of zero beliefs by IBP converges All the inferred zero beliefs are correct Incompleteness: Iterative BP is as weak and as strong as arc-consistency Continuity Hypothesis: IBP is sound for zero -  IBP is accurate for extreme beliefs? Tested empirically

17 Experimental Results Algorithms: IBP IJGP Measures: Exact/IJGP histogram Recall absolute error Precision absolute error Network types: Coding Linkage analysis* Grids* Two-layer noisy-OR* CPCS54, CPCS360 We investigated empirically if the results for zero beliefs extend to ε-small beliefs (ε > 0) * Instances from the UAI08 competition Have determinism? YES NO

18 Networks with Determinism: Coding N=200, 1000 instances, w*=15

19 Nets w/o Determinism: bn2o w* = 24 w* = 27 w* = 26

20 Nets with Determinism: Linkage Percentage Absolute Error pedigree1, w* = 21 Exact Histogram IJGP Histogram Recall Abs. Error Precision Abs. Error Percentage Absolute Error pedigree37, w* = 30 i-bound = 3i-bound = 7

21 Nets with Determinism: Grids (size, % determinism) =, w* = 22

22 Nets w/o Determinism: cpcs CPCS360: 5 instances, w*=20 CPCS54: 100 instances, w*=15

23 The Cutset Phenomena & irrelevant nodes Observed variables break the flow of inference IBP is exact when evidence variables form a cycle-cutset Unobserved variables without observed descendents send zero- information to the parent variables – it is irrelevant In a network without evidence, IBP converges in one iteration top-down X X Y

24 Nodes with extreme support Observed variables with xtreme priors or xtreme support can nearly-cut information flow: D B1B1 EDED A B2B2 EBEB ECEC EBEB ECEC C1C1 C2C2 Average Error vs. Priors

25 Conclusion: For Networks with Determinism IBP converges & sound for zero beliefs IBP’s power to infer zeros is as weak or as strong as arc-consistency However: inference of extreme beliefs can be wrong. Cutset property (Bidyuk and Dechter, 2000): Evidence and inferred singleton act like cutset If zeros are cycle-cutset, all beliefs are exact Extensions to epsilon-cutset were supported empirically.

26 Inference on Trees is Easy and Distributed Belief updating (sum-prod) MPE (max-prod) CSP – consistency (projection-join) #CSP (sum-prod) P(X) P(Y|X)P(Z|X) P(T|Y) P(R|Y)P(L|Z)P(M|Z) Trees are processed in linear time and memory Also Acyclic graphical models

27 Inference on Poly-Trees is Easy and Distributed


Download ppt "On the Power of Belief Propagation: A Constraint Propagation Perspective Rina Dechter Bozhena Bidyuk Robert Mateescu Emma Rollon."

Similar presentations


Ads by Google