Download presentation
Presentation is loading. Please wait.
1
A Cyclopropane Fragmentation Approach to Heterocycle Assembly Kevin Minbiole James Madison University August 11, 2005
2
Outline I. Introduction to Cyclopropanes and Heterocycle Formation Strategies II. Proof of Concept: Oxepane Synthesis III. Progress Towards Nitrogenous Heterocycles IV. Radical Strategies V. Future Directions
3
Outline I. Introduction to Cyclopropanes and Heterocycle Formation Strategies II. Proof of Concept: Oxepane Synthesis III. Progress Towards Nitrogenous Heterocycles IV. Radical Strategies V. Future Directions
4
Cyclopropane Strain and Reactivity Cyclopropane has significant ring strain. Cyclopropanes have pi character.
5
Alkenes and Cyclopropanes “Virtually every reaction that an alkene undergoes has its counterpart in the repertoire of transformations possible with cyclopropanes.” Hudlicky, T.; Reed, J. W. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I. Eds.; Pergamon: Oxford, 1991; Vol. 5, p 901.
6
Alkenes and Cyclopropanes Carreira’s approach to spirotryprostatin B Cossy’s approach to zincophorin Marti, C.; Carreira, E. M. J. Am. Chem. Soc. 2005, ASAP. Cossy, J.; Blanchard, N.; Defosseux, M.; Meyer, C. Angew. Chem. Int. Ed. 2002, 41, 2144.
7
Alkenes and Cyclopropanes
8
Oxocarbenium-Based Heterocycle Syntheses
9
Zimmerman-Traxler Cyclization
10
The Kulinkovich Cyclopropanation Kulinkovich, O. G. Chem. Rev. 2003, 103, 2597.
11
Cyclopropanation Yields Cho, S. Y.; Cha, J. K. Org. Lett. 2000, 2, 1337-1339.
12
Outline I. Introduction to Cyclopropanes and Heterocycle Formation Strategies II. Proof of Concept: Oxepane Synthesis III. Progress Towards Nitrogenous Heterocycles IV. Radical Strategies V. Future Directions
13
Initial Attempts at Oxepane Formation
14
Softer Lewis acids (CuSO 4, ZnCl 2, SnCl 2 ) stop at acetal
15
Mechanism of Oxepane Formation
17
Stereochemistry of Oxepane Formation
18
Zimmerman-Traxler Cyclization
19
Initial Limitations of Oxepane Formation
20
Two-Lewis Acid System No problems associated with coexistence of two Lewis acids
21
Yields and Scope of Oxepane Formation O'Neil, K. E.; Kingree, S. V.; Minbiole, K. P. C. Org. Lett. 2005, 7, 515-517.
22
Appearance of Trans Oxepane
23
Inclusion of Sidechain Functionality
24
Certain chelating groups are tolerated…
25
Inclusion of Sidechain Functionality Certain chelating groups are tolerated… but others fail to rearrange to oxepane
26
Reaction Optimization Alternate Lewis acids Zirconium tetrachloride Alternate drying agents Molecular sieves Alternate solvent systems More or less polar solvents
27
Outline I. Introduction to Cyclopropanes and Heterocycle Formation Strategies II. Proof of Concept: Oxepane Synthesis III. Progress Towards Nitrogenous Heterocycles IV. Radical Strategies V. Future Directions
28
Nitrogen Analogs: Azepines Analogous reaction in nitrogenous heterocycles?
29
Nature of Protecting Group on Nitrogen
30
Assembly of Azepine Precursor
31
Cyclization attempts
32
Cyclization Attempts with Free Amine Amino alcohol not yet isolated
33
Outline I. Introduction to Cyclopropanes and Heterocycle Formation Strategies II. Proof of Concept: Oxepane Synthesis III. Progress Towards Nitrogenous Heterocycles IV. Radical Strategies V. Future Directions
34
Radical Cyclization
35
Heterolysis is known for cyclopropanols with mild single electron oxidants (e.g., Mn 3+ and Fe 3+ ).
36
Radical Cyclization Utilizing Azide Kim, S.; Joe, G. H.; Do, J. Y. J. Am. Chem. Soc. 1994, 116, 5521-5522.
37
Radical Cyclization Towards Heterocycles
38
Radical Cyclization Towards Functionalized Heterocycle
39
Progress Towards Piperidine
40
Recourse for Piperidine
41
Towards the Pyrrolidine Alper, P. B.; Hung, S.-C.; Wong, C.-H. Tetrahedron Lett. 1996, 6029-6032.
42
Outline I. Introduction to Cyclopropanes and Heterocycle Formation Strategies II. Proof of Concept: Oxepane Synthesis III. Progress Towards Nitrogenous Heterocycles IV. Radical Strategies V. Future Directions
43
Alternative Ring Size
44
Sites of Functionalization on Oxepane Ring
45
Cyclopropane Functionalization via Cyclopropene Doyle, M. P.; Protopopova, M.; Müller, P.; Ene, D.; Shapiro, E. A. J. Am. Chem. Soc. 1994, 116, 8492. Müller, P.; Granicher, C. Helv. Chim. Acta 1995, 78, 129. Fox, J. M.; Yan, N. Curr. Org. Chem. 2005, 9, 719.
46
Natural Product Total Synthesis
47
Conclusions Cyclopropanes can be utilized as homo-alkenes to prepare heterocycles A facile two-step procedure has been developed to prepare oxepanes with excellent stereoselectivity Further substitution and alternate heterocycles are being explored Radical cyclization promises another method to deliver heterocycles from cyclopropanols
48
Epilogue on Undergraduate Teaching and Research Quality of Life Opportunities for Funding Satisfaction Direction of research Students
49
The Group Kerry O’Neil, JMU ’05Seth Kingree, JMU ’06Cambria Baylor, JMU ’06 Andrew Blanchard, JMU ’07Steve Andrews, JMU ’07Erik Stang, JMU ’06
50
Where’s James Madison University?
51
Funding
52
Acknowledgements NMR: Tom Gallaher and Jeff Molloy Nebraska Center for Mass Spectrometry Drs. Kevin Caran and Scott Lewis James Madison University
54
Future Direction: Cyclopropane Functionalization
55
Other Backups: Discrete Homoenolate
56
Other Backups: Radical
57
Aza Cope Possibility
58
Modified Point of Attachment
59
Precedent For Acyliminium Formation Hsung Precedent
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.