Presentation is loading. Please wait.

Presentation is loading. Please wait.

Vacuum & Particles 陳 鎰 鋒 中央大學 物理系 2009.11.27. 粒子從那裡來 ? 真空 Heavy Ion e+e-  3 jets   e+e- g*  q q g.

Similar presentations


Presentation on theme: "Vacuum & Particles 陳 鎰 鋒 中央大學 物理系 2009.11.27. 粒子從那裡來 ? 真空 Heavy Ion e+e-  3 jets   e+e- g*  q q g."— Presentation transcript:

1 Vacuum & Particles 陳 鎰 鋒 中央大學 物理系 2009.11.27

2 粒子從那裡來 ? 真空 Heavy Ion e+e-  3 jets   e+e- g*  q q g

3 energy Vacuum Space Time energy mass

4 Bremsstrahlung (QCD) Bremsstrahlung (QED)

5 e+e-  g*  Hadrons e+e-  g e+e-  g g*  g Hadrons e+e-  QQ  Hadrons ggg  Hadrons e+e-  e+e- gg *  e+e- Hadrons Heavy Ion Collision Au+Au  ??  Hadrons Vacuum g g gg ggg Annihilation Two-Photon Quarkonium Decay

6

7 D meson ~0.02 J/  > 5.3

8 Quarkonium  ggg or ggg / e+e-  qq (CLEO) √S ~ 10 GeV ggg / qq

9 e+e-  g*  Hadrons e+e-  g e+e-  g g*  g Hadrons e+e-  QQ  Hadrons ggg  Hadrons e+e-  e+e- gg  e+e- Hadrons Heavy Ion Collision Au+Au  ??  Hadrons EM Strong Vacuum Two-Photon Annihilation Quarkonium Decay

10 Space-Time structure of Vacuum T < 10 -20 s S < 10 -18 m Correlation – charge, flavor, baryon Coherence  Quantum Mechanics

11 Principle of HBT interferometry (Hanbury-Brown-Twiss) Quantum Correlation size

12 e+ e-, PP Heavy Ion QGP R ~ fm

13 D X D Quantum Correlation EPR paradox @ Y(4S) Y(4040)  D*D*  DD p p  DD J/  suppression DT, DE =Dmc 2 the heavier, the earlier J/Y f T S

14 e+e-  g*  Hadrons e+e-  g e+e-  g g*  g Hadrons e+e-  QQ  Hadrons ggg  Hadrons e+e-  e+e- gg  e+e- Hadrons Heavy Ion Collision Au+Au  ??  Hadrons EM Strong Weak ? B or D meson decays (top?) Vacuum Two-Photon Annihilation Quarkonium Decay W ggg ggg Z g “Extended Source” e.g. D 0  K - p + ; K - K + cu  su [d u] ; s[u s]u Extra dimension?

15 e+e-  g*  Hadrons e+e-  g e+e-  g g*  g Hadrons e+e-  QQ  Hadrons ggg  Hadrons e+e-  e+e- gg  e+e- Hadrons Heavy Ion Collision Au+Au  ??  Hadrons Extra dimension? EM Strong Weak ? B or D meson decays (top?) Vacuum Two-Photon Annihilation Quarkonium Decay

16 e+e-  --> h+h- e+e- Two Photon e+e-    h+h- (annihilation) e+e-  e+e-   h+h-  (ISR)

17 e+e-    h+h-

18 Two-Photon from Belle gg  p+p-; K+K- p 0 p 0 ; K 0 s K 0 s p 0 h; hh; PP

19 events W distribution of gg  p 0 h W: invariant mass (p 0 h ) or W gg

20 Angular dependence of differential cross sections in different W regions 1/sin 4  *

21 Cross section  (   hh)  = a*W -n N = 6 for mesons  (k+k-)/  (  +  -) ~ 1 k s 0 (ds) / K+(us) ~ 2/25 Ratio of  (k s 0 k s 0 )/  (k+k-) is not const ?? 

22 W dependence of the cross section ratio of p 0 h to p 0 p 0

23 gg  p+p- gg  K+K-

24 Cross section  (   hh)  = a*W -n N = 6 for mesons N = 10 for baryons PP N = 15.1±1.1±1.5 12.4±2.4±1.5 N = 10 Asymptotic? W: 2.5 – 2.9 W: 3.2 – 4.0  p 0 h 10.5 ± 1.2 ± 0.5

25 s(p 0 p 0 )/s(p+p-)

26 W distribution of gg  

27 gg  pp

28 gg  PP p+p- gg  h+h-

29 gg  PP p+p-  PP “R” gg  PP K+K-

30 W p + p - and W K+K- distributions (W  ) in gg --> PP K+K- / p+p- reactions (gg  K+K- / gg   +  -)

31 gg  KK

32 Charge Correlation in gg  pp k+k- process Opp-sign combinations (PK-, PK+) Like-sign combinations (PK-, PK+)

33 gg  PP p+p- e+e-  D*- D+ p+p-

34 e+e-  D*- D+ p+p- Opp-sign combinations (D*-p+, D+p-) Like-sign combinations (D*-p-, D+p+)

35 gg  PP p+p- e+e-  D*- D+ p+p-

36 e+e-  g*  Hadrons e+e-  g e+e-  g g*  g Hadrons e+e-  QQ  Hadrons ggg  Hadrons e+e-  e+e- gg  e+e- Hadrons Heavy Ion Collision Au+Au  ??  Hadrons Extra dimension? EM Strong Weak ? B or D meson decays (top?) Vacuum Two-Photon Annihilation Quarkonium Decay

37 events W distribution of p 0 h W: invariant mass (p 0 h ) or W gg

38 CLEO_c -- DD (DD,DD*,D s D s ) & DD  Charm-Production in e+e- Annihilation around 4 GeV hep-ex/0710.0165 (CC) Energy level

39 Energy Level DD threshold Meson (Quarkonium) X, Y, Z (Tetra Quark) D*   D Jets Formation Distance C C C C C C CC

40 Meson immerges in Vacuum C C Y(4040) s s u u Y(4040)  D*D*, DsDs 顏東茂 T.M. Yan Mix of energy levels width

41 Cluster (Herwig/Weber)

42 String (Pythia/LUND)

43   f 0 (980)   +  - ss or k+k- Virtual K+K- is needed p 0 / r = (dd - uu) / 2 ½ Time

44 D+/D*+ = 0.36 ± 0.10 ± 0.20 PS/V ratio D+ meson fragmentation function (‘85) c-quark  D-meson e+e-  c c  D + x

45 V/PS Seuster ‘06

46 e+e-  c c  DD + X D X D

47 L L Correlation (OPAL) LL Rapidity y = ½ ln[ (E + p ║ ) / (E - p ║ )]

48 Short range correlation Long range correlation

49 Belle data MC (phase) e+e-  D* - D 0 p + (USTC)  D* D**, D D** “Jet property”

50 K T vs Rapidity 10 GeV e+e-  c c events

51 真空如何產生粒子 ? g*  q q g

52 無中生有 E = MC 2

53

54 energy Vacuum Space Time energy mass

55 Meson immerges in Vacuum C C Y(4040) s s u u Y(4040)  D*D*, DsDs

56 Energy Level DD threshold Meson (Quarkonium) X, Y, Z (Tetra Quark) D*   D Jets Formation Distance C C C C C C CC

57 Particle production via 1. ggg / qq ggg/gg 2.   hh  *  hadrons 3.   PPhh  *  DD  4. e+e-  cc, XYZ, DD, DD  jets

58 Space-Time structure of Vacuum T < 10 -20 s S < 10 -18 m Correlation – charge, flavor, baryon Coherence  Quantum Mechanics

59 e+e-  +  -  E+e-  pi+pi- g


Download ppt "Vacuum & Particles 陳 鎰 鋒 中央大學 物理系 2009.11.27. 粒子從那裡來 ? 真空 Heavy Ion e+e-  3 jets   e+e- g*  q q g."

Similar presentations


Ads by Google