Presentation is loading. Please wait.

Presentation is loading. Please wait.

40 GHz MMIC Power Amplifier in InP DHBT Technology Y.Wei, S.Krishnan, M.Urteaga, Z.Griffith, D.Scott, V.Paidi, N.Parthasarathy, M.Rodwell Department of.

Similar presentations


Presentation on theme: "40 GHz MMIC Power Amplifier in InP DHBT Technology Y.Wei, S.Krishnan, M.Urteaga, Z.Griffith, D.Scott, V.Paidi, N.Parthasarathy, M.Rodwell Department of."— Presentation transcript:

1 40 GHz MMIC Power Amplifier in InP DHBT Technology Y.Wei, S.Krishnan, M.Urteaga, Z.Griffith, D.Scott, V.Paidi, N.Parthasarathy, M.Rodwell Department of Electrical and Computer Engineering, University of California yunwei@ece.ucsb.edu tel: 805-893-8044, fax 805-893-3262

2 Outline LEC 2002UCSB Introduction Transferred-Substrate Power DHBT Technology Circuit Design Results Conclusion

3 IntroductionLEC 2002 Applications for power amplifiers in Ka band  satellite communication systems  wireless LANs  local multipoint distribution system  personal communications network links and digital radio MMIC Amplifiers in this frequency band Kwon et. al., IEEE MTT, Vol.48, No. 6, June. 2000 3 stage HEMT, class AB, Pout=1 W, Gain=15 dB, PAE=28.5%, size=9.5 mm 2 This Work: Single stage cascode InP DHBT, class A, Pout=50 mW, Gain=7 dB, PAE=12.5% size=0.42 mm 2

4 Transferred-Substrate HBT MMIC fabrication

5 MBE DHBT layer structure Band profile at V be =0.7 V, V ce =1.5 V InP 8E17 Si 300 Å emitter InGaAs 1E19 Si 500 Å Grade 1E19 Si 200 Å InP 1E19 Si 900 Å Grade 8E17 Si 233 Å Grade 2E18 Be 67 Å InGaAs 4E19 Be 400 Å Grade 1E16 Si 480 Å InP 2E18 Si 20 Å InP 1E16 Si 2500 Å Multiple stop etch layers Buffer layer 2500 Å base collector substrate 400 Å InGaAs base 3000 Å InP collector

6 Small-area T.S. DHBTs have high cutoff frequencies. UCSB Sangmin Lee BV CEO = 8 V at J E = 0.4 mA/  m 2 f max = 462 GHz, f t = 139 GHz V ce(sat) ~1 V at 1.8 mA/  m 2

7 Design difficulties with large-area power DHBTs UCSB Yun Wei ARO MURI Thermal instability further increases current non-uniformity Ic Temperature collector SiN emitter contact basepoly BCB Metal strip Au Via Steady state current and temperature distribution when thermally stable base feed sheet resistance:  s = 0.3  / significant for > 8 um emitter finger length Large Area HBTs: big C cb, small R bb,  even small excess R bb substantially reduces f max 0.08  m Emitter contact Metal1 Base contact Current hogging in multi-finger DHBT: Distributed base feed resistance: Ic Temperature K<1 for thermal stability → must add emitter ballast resistance Initial current and temperature distribution thermal feedback further increases current non-uniformity

8 8 finger common emitter DHBT Emitter size: 16 um x 1 um Ballast resistor (design):9 Ohm/finger Jc=5e4 A/cm 2 Vce=1.5 V First Attempt at Multi-finger DHBTs: Poor Performance Due to Thermal Instability thermally driven current instability  collapse UCSB low f max due to premature Kirk effect (current hogging) excess base feed resistance ARO MURI Yun Wei

9 Large Current High Breakdown Voltage Broadband InP DHBT UCSB 8 -finger DHBT 8 x (1  m x 16  m emitter ) 8 x (2  m x 20  m collector ) Key Improvements 8 Ohm ballast per emitter finger 2nd-level base feed metal Device Performance f max >330 GHz, V brceo >7 V, J max >1x10 5 A/cm 2 100 mA, 3.6 Volt device 2nd-level base feed metal Ballast resistor emitter collector Flip chip Yun Wei ARO MURI

10 UCSB HBT power amplifier-why cascode? ARO MURI Yun Wei I B1 * R. Ramachandran and A.F. Podell "Segmented cascode HBT for microwave-frequency power amplifiers" Advantages: common-base stage has large V ce → large output power common-emitter-stage has low V ce → small R ballast required → maintains large available power gain Disadvantage inductance of base bypass capacitor even small L greatly degrades gain V ce1 V ce2 + - + - I E1 R ballast I E2 radial stub capacitor

11 UCSB InP TS DHBT Power Amplifier Design ARO MURI Yun Wei Optimum admittance match Input match Low frequency stabilization 8 finger cascode Inter-stage DC bias /4

12 40 GHz 128  m 2 power amplifier UCSB cascode PA 0.6mm x 0.7 mm, A E =128  m 2 ARO MURI f 0 =40 GHz BW 3dB =16 GHz G T =7 dB P 1dB =14 dBm P sat =17 dBm @ 4dB gain Yun Wei

13 UCSB Yun Wei common base PA 0.5mm x 0.4 mm, A E =128  m 2 ARO MURI Bias: I c =78 mA, V ce =3.6 V f 0 =85 GHz BW 3dB =28 GHz G T =8.5 dB P 1dB =14.5 dBm P sat =16dBm, associated gain: 4.5 dB Y. Wei et al, 2002 IEEE MTT-S symposium W band power amplifiers in TS InP DHBT technology

14 UCSB Yun Wei cascode PA 0.5mm x 0.4 mm, A E =64  m 2 ARO MURI Bias: I c =40 mA, V ce =3.5 V f 0 =90 GHz BW 3dB =20 GHz G T =8.2 dB P 1dB =9.5 dBm P sat =12.5 dBm, associated gain: 4 dB Y. Wei et al, 2002 IEEE MTT-S symposium

15 Continuing work Higher-current DHBTs for increased mm-wave output power 250 GHz f max, I c,max =240 mA, thermally stable at 200 mA bias at V ce =3.2 Volts → suitable for W-band ~150 mW power amplifiers W-band DHBT power amplifiers designs for > 100 mW saturated output power now being tested Results to be reported subsequently… UCSB Yun Wei LEC 2002

16 Conclusions 40 GHz MMIC power amplifier in InP DHBT technology 7 dB power gain and 14 dBm output power at 1 dB compression. 17 dBm (50 mW) saturated output power 12.5% peak power added efficiency Future work: higher power DHBT power amplifiers at W-band and above lumped 4-finger topology, longer emitter fingers, power combining G-band (140-220 GHz) DHBT power amplifiers Acknowledgement Work funded by ARO-MURI program under contract number PC249806. UCSB Yun Wei LEC 2002


Download ppt "40 GHz MMIC Power Amplifier in InP DHBT Technology Y.Wei, S.Krishnan, M.Urteaga, Z.Griffith, D.Scott, V.Paidi, N.Parthasarathy, M.Rodwell Department of."

Similar presentations


Ads by Google